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Abstract. This work falls within the general framework of robust shape optimization: a physical
parameter of the problem is poorly known. In the model case studied, we try to minimize the volume
of an elastic structure subjected to uncertain loading under mechanical constraints: compliance
or a von Mises stress norm must remain controlled. We study two approaches: the first consists
in reducing the problem to a multiple loading type, while the second is based on a Clarke sub
differential calculation. Our contributions are a theoretical convergence result for the first approach
and a numerical comparison of the two approaches on test cases.
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1. Introduction. In this work we focus on the optimization of linear elastic
structures subjected to uncertain mechanical loads. Several different approaches can
be contemplated in order to take uncertain parameters into account. If some infor-
mation on the probability distribution of the uncertainties is available, techniques of
Robust Topology Optimization (RTO) or Reliability-Based Topology Optimization
(RBTO) can be considered. See [28, 14, 3, 18, 21, 19] for more information on the
different approaches to RTO and RBTO problems. As reported in [11], the optimiza-
tion of the worst-case scenario is preferable to other approaches involving stochastic
quantities when the data are imprecise or if they are uncertain with an unknown prob-
ability distribution, or if the strict respect of the constraint in all circumstances is of
primary importance. In many industrial applications, safety is a critical issue and the
strict respect of the constraint in all circumstances is of primary importance. Any
probabilistic criterion to measure the risk of failure cannot be used in this context.
Therefore, in this paper we focus on a worst-case criterion.

Problem statement. Let us study the following shape optimization problem, where
the objective consists in the minimization of the volume of the structure under me-
chanical constraints. We consider a structure represented by a Lipschitz continuous
bounded domain Ω ⊂ Rd, with d = 2 or d = 3. We suppose that its boundary ∂Ω to
be divided in three disjoint parts with strictly positive measure: ΓD, ΓN and Γ0. The
structure is clamped in ΓD, and a force g is applied on ΓN. The displacement solves
the following linear elasticity equations:

(1.1)


−div (σ (uΩ,g)) = f in Ω,

σ (uΩ,g) n = g on ΓN,
σ (uΩ,g) n = 0 on Γ0,

uΩ,g = 0 on ΓD.

Here σ (uΩ,g) denotes the stress tensor which is taken, according to Hooke’s law, as a
linear function of the linearized strain tensor ε (uΩ,g) defined as the symmetric part
of the gradient. For a homogeneous isotropic material, the linear relation between the
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stress and strain tensors is given by

σ (uΩ,g) = 2µε (uΩ,g) + λ(div uΩ,g)I,

where I is the identity matrix, and µ and λ are the Lamé parameters.
In this work, we assume that the mechanical loads applied are uncertain. Let us

suppose that f belongs to L2 (Ω)
d
and that g is a parameter that belongs to a bounded

set G ⊂ L2 (ΓN)
d
. Then we consider the following generic constrained optimization

problem defined on the set of admissible shapes Sadm which will be specified below:

(1.2)

∣∣∣∣∣∣∣∣
Find the admissible shape Ω ∈ Sadm minimizing the volume Vol(Ω)

under the constraint sup
g∈G

H(uΩ,g,Ω) ≤ τ ,

where the displacement uΩ,g ∈ H1
ΓD

(Ω)
d
solves (1.1).

Here and in the following, τ is a given threshold. Finally, we assume that the consid-
ered constraint functional H(·, ·) is written in integral form as

(1.3) H(u,Ω) =

∫
Ω

(j0(u(x)) + j1(∇u(x))) dx for u ∈ H1 (Ω)
d
,

with j0 and j1 continuous functions. If the mapping g 7→ H(uΩ,g,Ω) is continuous
and the set G is compact, H(uΩ,g,Ω) reaches its supremum for some g ∈ G, and the
constraint can be replaced by maxg∈G H(uΩ,g,Ω) ≤ τ .

State of the art. As remarked in [2], two different points of view can be adopted,
according to whether the functional affected by the perturbation acts as the objective
of an optimization problem or as a constraint. If the objective of the optimization is
the minimization of the maximal possible level of a functional, the problem can be
formulated as a min-max problem. This interpretation can also be applied to the case
of constrained optimization problems where an upper bound on the maximum of a
functional is imposed. However, this constraint can also be interpreted as imposing
an upper bound on the constraining functional for all possible configuration of the
uncertain parameters.

Different techniques to solve shape optimization problems with worst-case func-
tionals have been proposed. In [16, 24, 33, 5] the objective of the optimization problem
consists in minimizing the maximal possible value of a given functional. In particular,
the studies of Cherkaev and Cherkaeva [16], and of Allaire and de Gournay [24] focus
on minimizing the robust compliance of an elastic structure subject to an uncertain
load by taking advantage of the convexity of that specific functional. In [29, 2, 5]
are considered also problems where the uncertain functional acts as a constraint, and
numerical examples are provided for density and level-set methods. The authors of [2]
consider smooth functionals subject to small perturbations, and propose a method to
compute the shape derivative of their supremum using linearization techniques. This
approach was slightly improved in [22]. For further information about worst-case
problems, outside the domain of structure optimization, we refer to [11, 10].

Contribution and organization of the paper. In this paper, two different methods
for solving shape optimization problems under worst-case scenario constraints for a
given functional are presented and compared. Contrarily to the approach of [2], no
assumptions on the size uncertainties are asserted. However, both methods require
the convexity of the constraint functional with respect to the displacement.
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In industrial applications, the principal technique to approximate the solution
of problem (1.2) consists in the identification of a number N of representative load-
ing conditions and consider them as separate constraints of the shape optimization
problem. In section 2 we study that method and provide our first contribution The-
orem 2.9: as N goes to infinity, this approach provides a sequence of minimizers that
converges to a domain solving the original problem. To do this, we assume convexity
of both the constraint functional and the set of allowable mechanical loads. In sec-
tion 3 we study a general approach based on Clarke’s subdifferentials dealing with the
non differentiability of a supremum. In that context, we provide in Proposition 3.7 the
expression of the shape subdifferential. Finally, in section 4 the results two methods
are compared for some numerical applications in three dimensions.

2. A multi-scenarios approach for the worst-case. In this section, convex-
ity is the essential tool that allows us to avoid making assumptions about the small
amplitude of uncertainties. More precisely, we will use the fact that the ambiguous
set for the loading is a convex compact set in a of finite dimensional space and that
the constraint is a convex function of the displacement.

2.1. The chosen topology on sets and the continuity of the constraints.
Before describing the first approach, we recall a classical result concerning the maxi-
mization of convex functionals on convex sets. Such result descends directly from [36,
Theorem 32.3] and its corollaries.

Proposition 2.1. Let f : X → R be a convex and bounded function defined on
the vector space X , and S ⊂ X a compact convex set. Then, f attains supx∈S f(x)
in at least a point x̄ ∈ S, belonging to the border ∂S of the set S. Moreover, if S is a
convex, closed, and bounded polyhedral set, x̄ can be found among the vertices of S.

In order to define the concept of convergence for the domains, it is necessary
to introduce a topology on the set of admissible shapes Sadm and among the sets of
possible mechanical loads. At first, we recall the notion of Hausdorff distance between
subsets of metric spaces as in [31, Definition 2.2.7], see also [7, Proposition 1.2].

Definition 2.2 (Hausdorff distance). Let M be a metric space provided with the
distance dM, and let A1 and A2 be two compact subsets of M. The Hausdorff distance
between the sets A1 and A2 is

dH(A1,A2) = max

{
sup
x∈A1

dM(x,A2), sup
y∈A2

dM(y,A1)

}
.

In order to define a metric and the notion of convergence for open subsets of M,
we limit our study to uniformly bounded open sets. Let B ⊂ M be a fixed compact
subset of M. We can introduce a metric on the class of the open subsets of B as
proposed in [31, Definition 2.2.8 and Remark 2.2.10].

Definition 2.3 (Metric among open spaces and Hausdorff convergence). We
consider the following function mH defined on the class of subsets of B

(2.1) mH
B(A1,A2) = dH(B \ A1,B \ A2).

The function mH defines a metric structure on the class of open subsets of B. More-
over, if B̂ is another compact subset of M, and A1 and A2 are open sets contained
in both B and B̂, we have the identity

mH
B(A1,A2) = mH

B̂(A1,A2).
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For the sake of simplicity, if the compact subset of the metric space including all
subspaces of interest is fixed, we denote the Hausdorff metric introduced in (2.1)
as mH(·, ·). Finally, if {An}∞n=1 and A are open subsets of B, we say that the se-
quence {An}∞n=1 converges in the sense of Hausdorff towards A if

lim
n→∞

mH(An,A) = 0

and we denote such convergence as An
H−→A.

The shape functional Ω 7→ supg∈G H(uΩ,g,Ω) is not continuous if Sadm is a generic

class of open domains in Rd, since it relies on the computation of uΩ. Therefore, one
restricts the class of admissible domains to domains satisfying the ε-cone condition
see [31, Definition 2.4.1].

Definition 2.4 (ε-cone condition). Let ε be a positive parameter. For any x ∈ Rd

and any unit vector ξ ∈ Rd, we denote Bε(x) the ball of radius ε centered in x,
and Cε(x, ξ) the open cone of vertex x (without its vertex), of direction ξ defined as

Cε(x, ξ) =
{
y ∈ Rd : ⟨y − x, ξ⟩Rd ≥ cos(ε) |y − x| and 0 < |y − x| < ε

}
.

An open set A is said to satisfy the ε-cone condition if, for all x on the boundary
of A, there exists a unit vector ξ such that for any y ∈ Bε(x), the cone Cε(y, ξ) is
contained in A. We denote Dε(Rd) the set of all open domains in Rd fulfilling the
ε-cone condition. For any compact set B ⊂ Rd, we denote Dε(B) the subset of all
open domains in Dε(Rd) contained into B:

(2.2) Dε(B) = {A ⊂ B : A open, and satisfying the ε-cone condition} .

The continuity of Ω ∈ Sadm 7→ supg∈G H(uΩ,g,Ω) ∈ R relies on the following
result, proven in [15] and reported in [31, Theorem 3.2.13].

Theorem 2.5. We consider ε > 0, and B ⊂ Rd to be a compact set. Let {Ωn}∞n=1

and Ω be open domains in Sadm ⊂ Dε(B), and let Ωn
H−→Ω. Then, the sequence

{uΩn}∞n=1 converges towards uΩ, where uΩ is the solution of the linear elasticity
problem on Ω and uΩn is the solution on Ωn for all n ≥ 0.

Theorem 2.5 combined with the structure of the constraint stated in (1.3) ensures
that the shape functional Ω 7→ supg∈G H(uΩ,g,Ω) is continuous on a class of uniformly
bounded open sets satisfying the ε-cone condition for some positive ε.

2.2. Theoretical results. From now on, we consider that all admissible do-
mains satisfy the ε-cone condition, that they are uniformly bounded by a compact
set B, and that Sadm is a closed subset of Dε(B) for some ε > 0. We suppose that
the set of admissible loads is bounded, convex and finite-dimensional, and the map-
ping g 7→ H(uΩ,g,Ω) is a convex function. The objective of this section is to justify
the approach of the engineers and provide some results on the convergence of the
solution when the number of loading conditions N increases.

We state all the results of this section for the following generic optimization
problem, where the dependence from the state is kept implicit

(2.3)

∣∣∣∣∣∣
Find the admissible shape Ω ∈ Sadm minimizing the volume Vol(Ω)

under the constraint sup
g∈G

h (g,Ω) ≤ τ .
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We suppose that G is a compact convex set contained in a finite dimensional space
(Y, ∥·∥Y), and that h : G × Sadm → R is a real-valued function. The mapping Ω 7→
h (g,Ω) can be seen as an instance of a family of shape functions depending on the
parameter G. Moreover, we assume that the functions satisfy the following conditions:

(i) the mapping g 7→ h (g,Ω) is convex and bounded for all admissible Ω ∈ Sadm;
(ii) for all choice of the parameter g ∈ G, the mapping Ω 7→ h (g,Ω) is shape

differentiable.
A first result on the solution of problem (1.2) is provided by the following propo-

sition, which applies to the case where the set of admissible loads is polyhedral.

Proposition 2.6. Let G be a compact convex polyhedral subset of the Banach
space Y with N vertices g1, . . . ,gN , and h : G × Sadm → R a real-valued function
satisfying the assumptions (i) - (ii) stated above. Then, the solution of problem (2.3)
is equivalent to the solution of the following constrained optimization problem:

(2.4)

∣∣∣∣∣Find the admissible shape Ω ∈ Sadm minimizing the volume Vol(Ω)

under the N inequality constraints: ∀i ∈ {1, . . . , N}, h (gi,Ω) ≤ τ .

Proposition 2.6 follows directly from the application of Proposition 2.1 to the in-
equality constraint. Moreover, the formulation of Proposition 2.1 as an optimization
problem with multiple constraints makes it conforming with the nullspace optimiza-
tion algorithm introduced in [27, 26] which simplifies the numerical implementation.

Having proven a result on the solution of problem (2.3) for convex polyhedra, we
aim to extend it to more general compact convex sets. Let G be a compact and convex
subset of a Banach space Y, and {Gn}∞n=1 a sequence of convex compact polyhedral
subsets of Y converging towards G with respect to the Hausdorff distance. The next
step is the evaluation of the convergence of the minimizers of a sequence of problems
in the form (2.3). A first important remark concerns the relation of the admissible
sets in two different problems, when the corresponding sets of parameters are nested
one into the other.

Lemma 2.7. Let us consider two subsets G1, G2 of a Banach space Y such that
G1 ⊂ G2. We denote E1, E2 the subsets of Sadm ⊂ Dε(B) where the inequality
constraint of problem (2.3) is satisfied for the sets of parameters G1 and G2 respectively:

Ei =

{
Ω ∈ Sadm : sup

g∈Gi

h (g,Ω) ≤ τ

}
, for i ∈ {1, 2}.

Then, E2 ⊂ E1.

Proof. Let us consider Ω ∈ E2. Since all g1 ∈ G1 belongs also to G2, we have
that h (g1,Ω) ≤ τ for all g1 ∈ G1. Thus Ω ∈ E1.

Thanks to Lemma 2.7, we can prove the following result about the convergence
of the solutions of a sequence of problems in the form (2.3).

Proposition 2.8. We consider {Gn}∞n=1 to be an increasing sequence of compact

subsets of Y where Gi ⊂ Gj if i < j and such that G =
⋃∞

i=1 Gi is compact as well.
Let h : G × Sadm → R be a function that satisfies the assumptions (i) and (ii),
Sadm ⊂ Dε(B) closed, and τ ∈ R be a given threshold. As in Lemma 2.7, we denote Ei

the subset of admissible domains Sadm such that, if Ω ∈ Ei, then h (g,Ω) ≤ τ for
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all g ∈ Gi. Finally, we denote E the set of admissible domains such defined as

E =

{
Ω ∈ Sadm : sup

g∈G
h (g,Ω) ≤ τ

}
,

and we suppose that neither any set Ei, nor the set E is empty. Then, the se-
quence {Ei}∞i=1 is decreasing, in the sense that Ei ⊇ Ej if i < j, E =

⋂∞
i=1 Ei, and E

as well as all Ei are closed subsets of Sadm with respect to its metric mH.

Proof. The fact that {Ei}∞i=1 is a decreasing sequence follows from Lemma 2.7.
Next, we prove the identity E =

⋂∞
i=1 Ei. The inclusion E ⊂ ⋂∞

i=1 Ei is, again, a
direct consequence of Lemma 2.7 since, for all i > 0, we suppose that G ⊇ Gi. In
order to prove the converse inclusion we suppose that Ω ∈ Ei for all i > 0. Since
we defined the set G as G =

⋃∞
i=1 Gi, for all g ∈ G, there exists a sequence {gi}∞i=1

such that gi ∈ Gi for all i > 0, and gi → g. By hypothesis, g 7→ h (g,Ω) is convex
on the finite-dimensional space Y and it is bounded. Thus, such mapping is also
continuous (see [36, Corollary 10.1.1]). By the definition of the sets {Ei}∞i=1 and the
sequence {gi}∞i=1, and by the continuity of g 7→ h (g,Ω), we deduce that h (g,Ω) ≤ τ ,
and we conclude that Ω ∈ E.

Let i ∈ N. In order to prove that Ei is a closed set, we consider the func-
tion Φi : Sadm → R+, mapping Ω 7→ supg∈Gi

h (g,Ω). Such function is well-defined
and continuous on Sadm, since the set of parameters Gi is compact. Thus, we deduce
that Ei = Φ−1

i ([0,M ]) is a closed subset of Sadm. Since E =
⋂∞

i=1 Ei, we conclude
that E is closed with respect to the Hausdorff metric in Sadm as well.

Now, we can state the main result of this section, which is about the convergence
of the solution of a sequence of shape optimization problems in the form (2.6) with
an increasingly accurate approximation of the set G.

Theorem 2.9. We consider a compact set B ⊂ Rd, and a family of open do-
mains Sadm, uniformly bounded by B and closed in Dε(B). Let h : G ×Sadm → R be a
function fulfilling assumptions (i) and (ii), τ ∈ R a given threshold, and {Gn}∞n=1

a sequence of compact subsets of Y satisfying the hypotheses of Proposition 2.8.
Let {Ωi}∞i=1 be a sequence of domains such that Ωi ∈ argminΩ∈Ei

Vol(Ω) for all i ∈ N.
Then, {Ωi}∞i=1 admits a converging sub-sequence with respect to the Hausdorff metric,
and any Ω∞ in the limit class is a solution of problem (2.3).

Proof. Let us consider a sequence {Ωi}∞i=1 such that Ωi ∈ Ei for all n > 0. All
sets Ei are closed subset of Sadm ⊂ Dε(B) embedded into one another, and Dε(B)
is sequentially compact with respect to the Hausdorff metric [31, Theorem 2.4.10].
Thus, {Ωi}∞i=1 admits a sub-sequence converging towards Ω∞ ∈ Dε(B), and Ω∞ ∈ Ei

for all i ∈ N. Thanks to Proposition 2.8 we deduce that Ω∞ ∈ E.
Finally, in order to prove that Ω∞ ∈ argminΩ∈E Vol(Ω), we reason by contra-

diction. Let ε > 0 and Ωε ∈ E such that Vol(Ω∞) = Vol(Ωε) + ε. Since Vol(·) is a
continuous function with respect to the metric mH, there exists Nε > 0 such that,
for all n > Nε, Vol(Ωn) > Vol(Ωε) + ε/2. This result is in contradiction with the
assumption Ωn ∈ argminΩ∈En

Vol(Ω), since Ωε ∈ E ⊂ En. Therefore, we conclude
that Ω∞ ∈ argminΩ∈E Vol(Ω).

One technique to solve problem (2.3) for a constraint functional h (·, ·) satisfying
conditions (i) and (ii) consists in solving an approximate problem where the set of
admissible parameters G is replaced by a convex polyhedral set GN with N vertices.
Theorem 2.9 suggests that, by increasing the accuracy of the approximation of G
by GN , the solution of the approximate problem converges towards the solution of
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the original one. The approximate problems can then be solved as simple constrained
optimization problem using Proposition 2.6.

g1

g2

G G4

(a) N = 4

g1

g2

G G8

(b) N = 8

g1

g2

G G16

(c) N = 16

Fig. 1. Approximation of the set of admissible parameters by convex polyhedra with an increas-
ing number of vertices N .

This approach suffers from two notable drawbacks.
• The first one is the fact that none of the polyhedral sets considered by Propo-
sition 2.6 is a conservative approximation of the original set of admissible
parameters g. Therefore, for any approximation GN of G, denoting ΩN the
solution of the corresponding optimization problem, there exists a parameter
g̃ ∈ (G \ GN ) ̸= ∅ such that h (g,ΩN ) > τ . A possible solution to this is-
sue consists in considering a sequence of polyhedral sets converging towards
G∗ strictly containing G. However, the convergence of the solutions of the
approximated problems towards the solution of the original would be lost.

• A second important issue from the numerical point of view concerns the
number of points that are necessary to accurately approximate the finite-
dimensional set G. Indeed, as shown in [9], given a convex set G ⊂ Rn of
class C2 and a tolerance ϵ > 0, the minimal number of vertices NG,ϵ such that
the Hausdorff distance between their convex hull and G is bounded by

(2.5) NG,ϵ ≥
(
c(G)
ϵ

)n−1
2

,

where c(G) is a constant depending on the shape of the convex set. Equa-
tion (2.5) proves that the number of vertices that are necessary to approx-
imate a given convex set for a given precision increases exponentially with
respect to the dimension of the space of parameters. Since any vertex in the
approximating polyhedron corresponds to a constraint in problem (2.3), an
exponentially increasing number of constraints has to be evaluated for the
solution of the optimization problem, indicating that this approach suffers
from the curse of dimensionality.

3. An approach based on subdifferentials. Another approach to solve prob-
lem (1.2) by a gradient-based method consists in differentiating directly the constraint
function Ω 7→ supg∈G H(uΩ,g,Ω). The question of the derivative with respect to the
domain of non-differentiable shape functionals has been considered in literature from
different points of view. The authors of [34, 1] are interested in the optimization with
respect to non-smooth functionals. In [4, 20, 13, 12], the quantity of interest consists
in the first eigenvalue of different functionals, which can be expressed as minima of
suitable Rayleigh quotients. In particular, the approach proposed in [13, 12] consists
in the computation of a semi-derivative in the sense of Danskin [23] by applying a
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result from Delfour and Zolésio [25, Theorem 2.1, Chapter 10] on the sensitivity of
a minimum with respect to a parameter. In this section we present an approach
inspired by the methods of [30], which relies on the notion of subdifferentiability of
non-smooth functions as introduced by Clarke in [17].

3.1. Introduction to Clarke’s subdifferential. At first, we recall the defini-
tions of generalized directional derivative, strict differentiability, and subdifferential
in the sense of Clarke, as found in [17, Section 2.1].

Definition 3.1 (Generalized directional derivative). Let X be a Banach space,
x, v ∈ X , and f : X → R a function which is Lipschitz continuous in a neighborhood
of x. The generalized directional derivative of f in x in the direction v is defined as

f◦ (x; v) = lim
y→x
t↘0+

f(y + tv)− f(y)

t
.

Definition 3.2 (Strictly differentiable function). Let us denote X ∗ the topolog-
ical dual of the Banach space X . A real-valued function f defined on X is strictly
differentiable in x ∈ X if it admits a generalized directional derivative f◦ (x; v) for
all v ∈ X , and there exists a linear functional Ds

x ∈ X ∗ such that, for all v ∈ X ,

f◦ (x; v) = Ds
x(v).

Next, we present the notion of subdifferential in the sense of Clarke, introduced
in [17] as “generalized gradient” and extending the results of Danskin [23].

Definition 3.3 (subdifferential in the sense of Clarke). Let f : X → R be a func-
tion defined on the Banach space X , which is Lipschitz continuous in a neighborhood
of x ∈ X . The subdifferential in the sense of Clarke of f in x is the subset of X ∗

defined as

∂f (x) = {L ∈ X ∗ : f◦ (x; v) ≥ L(v) for all v ∈ X} .
We state now a result presented as [17, Corollary 2 of Theorem 2.8.2] and referred
in [30, Section 4.2].

Proposition 3.4. Let X be a Banach space, T a metrisable, sequentially compact
topological space, x ∈ X , and {f(·, t)}t∈T a family of functions such that:
(A1) y 7→ f(y, t) is Lipschitz continuous for all y in a neighborhood Ux of x and for

all t ∈ T ;
(A2) for any y ∈ Ux the mapping t 7→ f(y, t) is upper-semicontinuous;
(A3) the set {f(x, t) : t ∈ T } ⊂ R is bounded;
(A4) f(·, t) is strictly differentiable in Ux, and the strict derivative Ds

yf(y, t) is
continuous in Ux × T .

We denote F : X → R the function mapping y 7→ F (y) = supt∈T f(y, t), which
is defined, finite, and Lipschitz continuous in Ux. Moreover, we denote T (y) =
{t ∈ T : f(y, t) = F (y)} the subset of the set of the parameters T where the maxi-
mum in the definition of F (·) is attained, and we remark that T (y) is not empty for
all y ∈ Ux.

Then, the subdifferential in the sense of Clarke of F exists for all y ∈ Ux and is
given by:

(3.1) ∂F (y) =

{∫
T
Ds

yf(y, t) dµ(t) : µ ∈ P [T (y)]

}
,
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where the notation P [S] denotes the collection of probability Radon measures on a
measurable subset S of T .

Remark 3.5. In [17, Section 2.2] is recalled that any continuously differentiable
function in x ∈ X is also strictly differentiable in x. Thus, in Proposition 3.4 we can
suppose that f(·, t) is differentiable in Ux and the derivative ∂f

∂y (y, t) is continuous
on Ux × T , and the proposition still holds true.

Let f : X × T → R satisfy the hypotheses of Proposition 3.4, and F : X → R
be the mapping x 7→ maxt∈T f(x, t). Finally, let us consider y ∈ X , and t ∈ T (y)
a parameter for which f(x, t) = F (x). Since P [T (y)] contains the Dirac measure
concentrated in t, the derivative ∂f

∂y (y, t) ∈ X ∗ belongs to the subdifferential ∂F (y).
Moreover, if F is differentiable in y ∈ X , the subdifferential reduces to a singleton.

3.2. Application to shape optimization problems. Similarly to what has
been done in subsection 2.2, we consider a generic optimization problem without an
explicit expression of the state like problem (2.3). For the sake of simplicity, we
denote Φ : Sadm → R the shape functional defined as

(3.2) Φ(Ω) = sup
g∈G

h (g,Ω).

Unfortunately, Proposition 3.4 cannot apply directly to differentiate Φ, since the space
Sadm provided with the Hausdorff metric mH defined in (2.1) is not a Banach space.
Such issue can be bypassed thanks to the definition of the shape derivative according
to Hadamard. Indeed, for a given admissible domain Ω ∈ Sadm, the deformation
field θ at the core of Hadamard’s moving boundaries approach belongs to the Banach

space W1,∞ (
Rd

)d
. With this in mind, we can extend the concepts of subdifferential

to shape functionals.

Definition 3.6 (Subdifferential of a shape functional). Let Ω ∈ Sadm be a do-
main in Rd, and J : Sadm → R a shape functional such that the mapping θ 7→ J(Ωθ)

admits a Gâteaux derivative dJ (Ω;θ) for all θ ∈ W1,∞ (
Rd

)d
. Then, the subdifferen-

tial of J in Ω is defined as

∂J (Ω) =
{
L ∈

(
W1,∞ (

Rd
)d)∗

: dJ (Ω;θ) ≥ L(θ) for all θ ∈ W1,∞ (
Rd

)d}
.

We can now state a result for shape functionals analogous to Proposition 3.4.

Proposition 3.7. Let Sadm be a family of uniformly bounded open domains in Rd

endowed with the topology induced by the Hausdorff metric mH, and G a compact
subset of a Banach space (Y, ∥·∥). Let Ω ∈ Sadm be an admissible domain, and
h : G × Sadm → R a shape functional such that:

(SA1) Ω̃ 7→ h
(
g, Ω̃

)
is Lipschitz continuous in a neighborhood UΩ of Ω for any

choice of the parameter g ∈ G;
(SA2) g 7→ h

(
g, Ω̃

)
is convex and bounded for all Ω̃ ∈ UΩ;

(SA3) Ω̃ 7→ h
(
g, Ω̃

)
is Fréchet differentiable in UΩ for any g ∈ G;

(SA4) the Fréchet derivative ∂h
∂Ω (g, Ω̃) ∈

(
W1,∞ (

Rd
)d)∗

is continuous in G × UΩ.

We denote Φ : Sadm → R the shape functional

Ω 7→ Φ(Ω) = max
g∈G

h (g,Ω),

9



where the maximum is attained thanks to the convexity of h (·,g) and compactness
of G. Then, the functional Φ(·) admits a subdifferential ∂Φ (Ω) in Ω, and its expression
is given by

∂Φ (Ω) =

{∫
G

∂h

∂Ω
(g,Ω) dµ(g) : µ ∈ P [G(Ω)]

}
⊂

(
W1,∞ (

Rd
)d)∗

.

Proof. We consider the class ΘΩ ⊂ W1,∞ (
Rd

)d
of admissible deformations de-

fined as

ΘΩ =
{
θ ∈ W1,∞ (

Rd
)d

: Ωθ ∈ UΩ

}
.

We introduce the function fΩ : G × ΘΩ → R mapping (g,θ) 7→ fΩ(g,θ) = h (g,Ωθ).
In order to prove Proposition 3.7, we verify that fΩ satisfies all the hypotheses of
Proposition 3.4. At first, we observe that the set G is compatible with the hypotheses
of Proposition 3.4, since it is a compact subset of the Banach space Y with respect to
the Hausdorff metric mH. The set ΘΩ is a neighborhood of the origin in the Banach

space W1,∞ (
Rd

)d
.

The conditions (A1) to (A4) of Proposition 3.4 are satisfied by fΩ thanks to
assumptions (SA1) and (SA2). In particular, the continuity of fΩ(·,θ) for all θ ∈ ΘΩ is

ensured by the convexity of g 7→ h
(
g, Ω̃

)
for all Ω̃ ∈ UΩ. The existence and continuity

of the strict derivative of θ 7→ fΩ(g,θ) follow from assumptions (SA3) and (SA4) and
from Remark 3.5. Therefore, the function θ 7→ FΩ(θ) = maxg∈G fΩ(g,θ) is well
defined, and it admits a subdifferential ∂FΩ (θ) with the following expression

∂FΩ (θ) =

{∫
G

∂fΩ
∂θ

(g,θ) dµ(g) : µ ∈ P [G(Ω)]
}

⊂
(
W1,∞ (

Rd
)d)∗

.

Thanks to the definitions of the functionals Φ and FΩ we have that, for all θ ∈ ΘΩ,
Φ(Ωθ) = FΩ(θ) and, in particular, Φ(Ω) = FΩ(0). Thus, ∂Φ (Ω) = ∂FΩ (0).

Proposition 3.7 provides a method to compute elements of the subdifferential
according to the shape ∂Φ (Ω) by computing a value of the parameter g ∈ G where
h (Ω,g) attains its maximum. Differently from the case studied in section 2, the
convexity of the set G of external loads is not required. It should also be remarked
that any element of the subdifferential defines a direction of descent for the functional
Φ, albeit not necessarily optimal if ∂Φ (Ω) is not a singleton.

3.3. Algorithmic implementation. Let us consider the same notations of
Proposition 3.7: G is a compact subset of a Banach space (Y, ∥·∥), h : G × Sadm → R
a function satisfying the conditions (SA1) - (SA4) of Proposition 3.7, and Φ (·) the
shape functional mapping Ω 7→ maxg∈G h (g,Ω).

In subsection 3.2 we provided the theoretical framework for the computation of
the subdifferential of Φ (·). Here we provide a procedure to compute one element to
the subdifferential ∂Φ (Ω). The procedure can be divided in two steps. First, we
identify a parameter g ∈ argmaxg∈G h (g,Ω) ⊂ G for which the maximum of h (·,Ω)
is attained. The maximum is attained in at least one point, since G is compact,
and h (·,Ω) is convex and bounded (see Proposition 2.1). Next, the shape derivative
of the term h (g,Ω) is computed using the classical methods of boundary variation.
Proposition 3.7 ensures that the shape derivative of h (g,Ω) belongs to the subdiffer-
ential ∂Φ (Ω).
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Different possible methods can be considered to identify the parameter g depend-
ing on the nature of the set G and the function h (·,Ω). If the mapping g 7→ h (g,Ω) is
differentiable with respect to g and G is a subset of a Hilbert space, a simple gradient-
descent method can be implemented to identify g. If further hypotheses apply on the
constraint functional or on the set of admissible parameters, ad hoc methods can be
used. An example for the case where g 7→ h (g,Ω) is a quadratic function and G an
ellipsoid is provided in subsection 4.1.

4. Numerical results.

4.1. 3D Cantilever. As first numerical application, we consider the optimiza-
tion of a 3D cantilever structure under a constraint on the mechanical compliance
given by

C (uΩ,g,Ω) =

∫
Ω

f · uΩ,g dx+

∫
ΓN

g · uΩ,g ds.

Then we consider the following problem

(4.1)

∣∣∣∣∣∣∣∣
Find the admissible shape Ω ∈ Sadm minimizing the volume Vol(Ω)

under the constraint sup
g∈G

C (uΩ,g,Ω) ≤ τ ,

where the displacement uΩ,g ∈ H1
ΓD

(Ω)
d
solves (1.1).

The initial condition of the structure is presented in Figure 2: the structure is
clamped on the four corners marked as ΓD, and the mechanical load g is applied on
the region ΓN on the opposite side. We suppose that the load g applied to ΓN consists
of two components: one of traction-compression (oriented along the x axis), and a
vertical one (along the z axis):

(4.2) g = Xex + Zez.

We suppose also that X and Z belong to the intervals [−gx, gx] and [−gz, gz] respec-
tively. Moreover, we suppose that they are bounded by the inequality:

(4.3)
X2

g2x
+

Z2

g2z
≤ 1.

The inequality (4.3) states that the set of admissible mechanical loads can be parametri-
zed by an ellipse in R2 with semi-axes equal to gx and gz.

The numerical parameters considered for this problem are reported in Table 3.
The simulations of this section have been performed on a Virtualbox virtual machine
Linux with 1GB of dedicated memory, installed on a Dell PC equipped with a 2.80
GHz Intel i7 processor.

In order to solve the optimization problem (4.1) we consider both the polyhedral
approximation approach of section 2, and the method based on the subdifferential as
in section 3. Both methods can be applied since the set G is convex, the mapping g 7→
C (uΩ,g,Ω) is a convex function, and the compliance operator satisfies the conditions
(SA1) - (SA4) of Proposition 3.7.

For the polyhedral approach, we approximated the ellipse G by polygons with 4,
8, and 16 vertices denoted G4, G8, and G16 respectively. The polygons G4, G8, and G16

are defined as convex hulls of N points as follows

GN = hull

{(
gx sin

(
2nπ

N

)
ex + gz cos

(
2nπ

N

)
ey

)
: n ∈ {0, . . . , N − 1}

}
⊂ R2.
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ΓD

ΓD

ΓD

ΓD ΓN

Fig. 2. Structure of the 3D cantilever structure. The region ΓN where the uncertain mechanical
load is applied is marked in red, while the clamping region ΓD is highlighted in grey.

It should be remarked that, since the compliance is invariant with respect to a change
of sign in the applied load, it is necessary to consider only half of the vertices of G4,
G8, and G16 to define the constraints of the approximated optimization problem. The
structures optimized for the three cases are denoted as Ω4 (top), Ω8 (middle), and Ω16

(bottom) respectively, and are represented in Figure 3.
In the subdifferential approach, it is necessary to identify the parameter g maxi-

mizing C (·,Ω) at each step of the optimization. We can assume, by Proposition 2.1,
that g belongs to the boundary of G. Therefore, there exists an angle α ∈ [0, 2π) such
that

g = sinα gxex + cosα gzez.

Thanks to the symmetry of the compliance operator, we can restrict the search for α
to the interval [−π

2 ,
π
2 ). The angle α yielding the maximal compliance for a given

shape Ω can be identified by interpreting the compliance as a quadratic functional.
Indeed, there exists a matrix MΩ ∈ R2×2 such that, for all α̂ ∈ [0, 2π),

C (uΩ,g,Ω) =
(
sin α̂, cos α̂

)
MΩ

(
sin α̂
cos α̂

)
,

where the load associated to uΩ,g is g(α̂) = sin α̂gxex + cos α̂gzez. The entries of the
matrix MΩ are

[MΩ]11 = m11 =

∫
Ω

σ (uΩ,gx
) : ε (uΩ,gx

) dx,

[MΩ]22 = m22 =

∫
Ω

σ (uΩ,gz
) : ε (uΩ,gz

) dx,

[MΩ]12 = [MΩ]21 = m12 =

∫
Ω

σ (uΩ,gx) : ε (uΩ,gz ) dx.

The angle α for which the maximum of the compliance is attained depends on the
eigenvector related to the maximal eigenvalue of MΩ. In particular, α can be com-
puted explicitly by the following expression
(4.4)

α =

{
π
4 − β

2 if m12 ≥ 0,
3π
4 + β

2 if m12 < 0,
where β = arcsin

 m22 −m11

2

√(
m22−m11

2

)2
+m2

12

 .
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Fig. 3. Optimal shapes for the polyhedron approach with N = 4, 8, 16 vertices (top to bottom).

The optimal shape resulting from the optimization based on the subdifferential is
reported in Figure 4, and we denote it as ΩS . In the graph of Figure 5 is reported the
evolution of the angle α along the iterations. We remark that α oscillates around 0,
underlying the fact that vertical loads which are orthogonal to the main axis of the
cantilever are responsible for the largest values of the compliance.

In Table 1 we reported the numerical results of the optimization of the cantilever
using the method of polyhedral approximation with three increasing degrees of pre-
cision, as well as the results of the subdifferential technique. The graph showing the
progressive decrease of the volume of the structure is presented in Figure 6a, while
Figure 6 follows the evolution of the constraint in each numerical example.

A first remark concerns the slow rate of convergence of the four examples, as

13



Fig. 4. Optimal shape ΩS resulting from the subdifferential approach.
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Direction of the maximal constraint

Fig. 5. Evolution of the direction of the maximal constraint (in terms of the angle α) during
the optimization process.

shown in Figure 6a. This issue seems to be proper to the 3D cantilever structure,
as pointed out also in [26, Section 6.2.1]. Next, we can observe in Figure 6b that
in all four cases the constraint on the maximum of the compliance is satisfied. By
comparing the duration of the four simulations we can state that the method based
on the subdifferential is efficient and reliable to solve problem (4.1) since it yields a
similar result as the three other simulations while requiring fewer computations of the
shape derivative.

Finally, we can see that the four simulations yield similar results, as a consequence
of the preeminence of the vertical load to the optimization of the structure. The fact
that the Hausdorff distances between ΩN and ΩS is of the order of the mesh size for
each N ∈ {4, 8, 16} supports the conclusion that all four simulations have reached a
result close to the exact solution of problem (4.1).

4.2. Disc. In this section we consider the optimization of a cylinder-like struc-
ture. Once again we aim to minimize its volume, but we replace the constraint on the
compliance on a constraint on the L6-norm of the von Mises stress, which is defined
as

(4.5) ∥sD (uΩ)∥6 =

√
3

2

(∫
Ω

(σD (uΩ) : σD (uΩ))
3
dx

)1/6

where σD (uΩ) = σ (uΩ) − 1
3 I tr(σ (uΩ)) is the deviatoric part of the stress tensor.

Refer to [8, 32] for more information on the physical interpretation of the von Mises
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Polyhedron Subdifferential
N = 4 N = 8 N = 16

Optimization
Duration [min] 180 187 208 180
Number of iterations 500 500 500 500

Results
Final volume Vol(Ω) [cm3] 0.369 0.418 0.428 0.419
Maximal compliance [Pa cm3] 25.00 24.95 24.96 24.99
dH(ΩS ,ΩN ) [cm] 0.1561 0.1361 0.2130 −

Table 1
Numerical results for the optimization of the volume of the cantilever under constraints on

the mechanical compliance, obtained using the Polyhedron method (with an increasing number of
vertices), and the subdifferential method.
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(a) Evolution of the objective function.
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(b) Evolution of the constraint for three instances
of the polyhedron method, and the subdifferential
method.

Fig. 6. Convergence of the objective (volume) and the constraint (compliance) for the cantilever.

stress.
The initial condition is presented in Figure 7: the structure is fixed on a region

ΓD on its side, while shear loads are applied tangentially to a ring-like surface ΓN on
the top of the cylinder. The optimization problem to be solved is the following:

(4.6)

∣∣∣∣∣∣∣∣
Find the admissible shape Ω ∈ Sadm minimizing the volume Vol(Ω)

under the constraint sup
g∈G

∥sD (uΩ)∥6 ≤ τ ,

where the displacement uΩ,g solves (1.1).

Similarly to the model considered in the previous section, we suppose that the
load g can be written as sum of two terms, aligned with the axes x and y

g = Xex + Y ey.

We suppose that the intensity of the applied force is bounded by g, so that the set
of admissible loads G can be parameterized by a circle in R2 with radius g. The
geometric and material properties of the structure, the mesh size, the maximal value
of the applied force and the threshold τ on the L6-norm of the von Mises stress are
reported in Table 4.

Similarly to the previous section, we consider three different approximations for
the polyhedral approach, where G is replaced by inscribed regular polygons with N =
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ΓN

ΓD

Fig. 7. Structure of the 3D disc structure. The region ΓN where the random load is applied is
marked in red, while the clamping region ΓD is highlighted in gray.

4, 8, and 16 vertices denoted G4, G8, and G16 respectively. These polygons can thus
be defined as convex hulls of N points as follows

GN = hull

{
g

(
sin

(
2nπ

N

)
ex + cos

(
2nπ

N

)
ey

)
: n ∈ {0, . . . , N − 1}

}
⊂ R2.

Thanks to the symmetry of the constraint with respect to a change of sign in the
applied force (and thus in the displacement uΩ,g), only N/2 constraints need to be
evaluated at each step of the solution of problem (4.6). The structures resulting from
applying the polyhedral approximation method are shown in Figure 8 and denoted
as Ω4, Ω8, and Ω16 respectively.

Contrarily to the example discussed in subsection 4.1, the increasing refinement in
the approximation of G results in structures that differ significantly from one another.
Indeed, we can see how Ω4, is optimized to resist the forces applied in the directions of
the four edges of G4. The structure Ω8 (middle line of Figure 8) with eight scenarios is
similar, but its four branches are wider, responding to forces oriented in the direction
bisecting the main axes. Finally, Ω16 (last line of Figure 8) is characterized by a
rotational symmetry, thus resisting to forces applied in 16 different directions.

The similarities between the two cases allow to use a similar parametrization of
the set G. Let us denote g the element of G maximizing the constraint functional. By
the convexity of the mapping g 7→ ∥sD (uΩ)∥6 Proposition 2.1 applies, and we deduce
that g belongs to the boundary of G. Thus, there exist α ∈ [0, 2π) such that

g = g (sinα ex + cosα ey) .

The constraint functional considered in problem (4.6) is the L6-norm of the von Mises
stress, which is not a quadratic function. Therefore, the method used in subsection 4.1
to identify the load maximizing the constraint functional cannot be applied. Instead,
we identify the value of α maximizing the constraint function by applying the Newton
method to the function α 7→ (∥sD (uΩ)∥6)

6
. It should be remarked that such a

function can be expressed analytically in terms of the displacement fields generated
by the application of the loads gex and gey. Thus its evaluation is extremely fast and
does not require the solution of an expensive boundary value problem. Once again,
thanks to the symmetry of the constraint under a change of sign of the mechanical
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Fig. 8. Optimal shape for the polyhedron approach with N = 4, 8, 16 vertices from top to bottom.

load, the search of the critical direction α can be limited to the interval [−π
2 ,

π
2 ). The

shape ΩS resulting from the application of the subdifferential approach is reported in
Figure 9.

The numerical results of the optimization performed using the polyhedral ap-
proximation and the subdifferential method are reported in Table 2. In Figure 10
we plotted the value of the maximal constraint throughout the optimization: firstly
for the three instances of the polyhedral approximation algorithm (Figure 10a), next
comparing them with the evolution of the constraints for the subdifferential approach
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Fig. 9. Optimal shape ΩS resulting from the Subdifferential approach.

(Figure 10b). The trend of the objective function for all four simulations is represented
in Figure 11a. In Figure 11b we report the evolution of the angle α parametrising the
direction of the load maximizing the L6-norm of the von Mises stress at each step.

The method of subdifferential yields an optimal structure ΩS with rotational sym-
metry similar to the most precise polyhedral approximation Ω16, as shown by Figure 9.
If we assume that ΩS is representative of the exact solution of problem (4.6), the com-
parison of the illustrations of the optimal shapes validates the convergence result of
Theorem 2.9. Indeed, the similarity between ΩN and ΩS increases when GN approx-
imates better the original set G. This statement is corroborated by the numerical
computation of the Hausdorff distances between ΩS and the shapes resulting from
the polyhedral approximation, as shown in Table 2.

By looking at the graph of Figure 10b we remark that the constraint on the
maximum of the L6-norm of the von Mises stress is overall satisfied by the method of
subdifferential, but more significant perturbations can be observed. A more difficult
convergence compared to the polyhedron method can be remarked in Figure 11a,
where a slower decrease in the objective function is evident, to the point that a larger
number of iterations has been necessary in order to reach a stable configuration (200
for the polyhedron method and 300 for the subdifferential). Both issues are justified
by the rotational symmetry of the optimization problem. As the graph in 11b shows,
the critical direction α varies widely at each step of the optimization algorithm, even
from one iteration to the next.

By comparing the duration of the simulations as presented in Table 2, we remark
that the subdifferental approach is overall faster than the polyhedral approximation,
since it requires fewer evaluations of the constraint functional. Therefore, the shorter
duration of each step compensates the smaller contribution of each iteration to the
decrease of the objective function.

5. Conclusions and perspectives. In this paper we have compared two dif-
ferent methods for solving shape optimization problems under worst-case constraints
on a given function. The first method can only be applied to convex functions of
the displacement, and is based on the approximation of the set G of admissible loads
by polyhedra. This method is effectively the design of a structure that satisfies the
constraint in a finite number of representative load cases. The second method is based
on the calculation of an element of the subdifferential of the constraint by identifying
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Polyhedron Subdifferential
N = 4 N = 8 N = 16

Execution of the optimization
Duration of the optimization [min] 189 296 499 159
Number of iterations 200 200 200 300

Results
Final volume Vol(Ω) [cm3] 666.27 692.18 751.46 874.07
Maximal von Mises stresses [kPa] 5.015 5.053 5.164 5.183
dH(ΩS ,ΩN ) [cm] 3.001 3.037 1.347 −

Table 2
Numerical results for the optimization of the volume of a disc structure under constraints on

the L6-norm of the von Mises stress, obtained using the Polyhedron method (with an increasing
number of vertices), and the Subdifferential method.
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Fig. 10. Convergence of the constraint (L6-norm of the von Mises stress) for the disc structure.

the critical element of the G that maximizes the constraint and differentiating in the
relative direction.

The numerical simulations of section 4 support the effectiveness of both methods
in the case of an admissible set of loads parameterized by an ellipse in R2. We
observed that in both cases the subdifferential method is faster than the polyhedral
approximation, since it requires fewer evaluations of the constraint function. However,
we note that when the allowable load maximizing the constraint is not unique, the
convergence of the subdifferential method is degraded and smaller and more numerous
optimization steps are required to converge.

One way to improve the subdifferential method is to consider multiple elements of
the subdifferential of the constraint function. Such a variant of the algorithm would
require identifying whether multiple mechanical loads maximize the constraint for
a given shape. A possible direction of development could be the adaptation of the
proximal algorithm to shape optimization, since it already relies on the subdifferential
in the sense of Clarke. See [6, 35] and references therein for further information on
the proximal algorithm in non-smooth optimization.
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[4] Grégoire Allaire and François Jouve. A level-set method for vibration and multiple loads
structural optimization. Computer Methods in Applied Mechanics and Engineering,
194(30):3269–3290, August 2005.

[5] Samuel Amstutz and Marc Ciligot-Travain. A notion of compliance robustness in topology
optimization. ESAIM: Control, Optimisation and Calculus of Variations, 22(1):64–87,
January 2016.
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Appendix A. Parameters for the numerical experiments.

Geometry of the structure
cross section length ℓs 1.0 cm
longitudinal length ℓx 2.0 cm
sidelength of ΓD 0.3 cm
radius of ΓN 0.1 cm

Elastic coefficients
young’s modulus E 200MPa
poisson’s ratio ν 0.3

Mechanical loads
compression load gx 25 kPa
vertical load gz 10 kPa

Mesh size parameters
minimal mesh size hmin 0.025 cm
maximal mesh size hmax 0.10 cm

Thresholds for the inequality constraints
threshold on the compliance τ 2.5× 10−2 kPa cm3

bound on the probability of failure p̄ 1.0%
Table 3

Numerical data concerning the geometry and the mechanics of the cantilever of Figure 2.

Geometry of the structure
height of the domain 12.0 cm
maximal radius of the romain 12.0 cm

Region ΓN

inner radius of ΓN 4.0 cm
outer radius of ΓN 6.0 cm

Region ΓD

thickness of ΓD 2.0 cm
Mesh size parameters

minimal mesh size hmin 0.75 cm
maximal mesh size hmax 1.25 cm

Elastic coefficients
Young’s modulus E 200MPa
Poisson’s ratio ν 0.3

Mechanical loads
maximal load in any direction g 10 kPa
threshold on ∥sD∥6 τ 5.0 kPa

Table 4
Numerical data concerning the geometry and the mechanics of the disc structure of Figure 7.
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