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Abstract. In this work is considered an elliptic problem, referred to as the Ventcel problem,4
involving a second order term on the domain boundary (the Laplace-Beltrami operator). A varia-5
tional formulation of the Ventcel problem is studied, leading to a finite element discretization. The6
focus is on the construction of high order curved meshes for the discretization of the physical do-7
main and on the definition of the lift operator, which is aimed to transform a function defined on8
the mesh domain into a function defined on the physical one. This lift is defined in a way as to9
satisfy adapted properties on the boundary, relatively to the trace operator. The Ventcel problem10
approximation is investigated both in terms of geometrical error and of finite element approximation11
error. Error estimates are obtained both in terms of the mesh order r ≥ 1 and to the finite element12
degree k ≥ 1, whereas such estimates usually have been considered in the isoparametric case so far,13
involving a single parameter k = r. The numerical experiments we led, both in dimension 2 and 3,14
allow us to validate the results obtained and proved on the a priori error estimates depending on15
the two parameters k and r. A numerical comparison is made between the errors using the former16
lift definition and the lift defined in this work establishing an improvement in the convergence rate17
of the error in the latter case.18
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1. Introduction.22

Motivations. In various situations, we have to numerically solve a Partial Differ-23

ential Equation (PDE), typically with a finite element method, on smooth geometry.24

A key point is to obtain an estimation of the error produced while approximating the25

solution u of the problem, by its finite element approximation uh while taking into26

account the error produced while approximating the physical domain Ω by the mesh27

domain Ωh.28

This typically is the case in this work, which is aimed at certain industrial ap-29

plications (in particular in the context of the project RODAM1) where the object or30

material under consideration is surrounded by a thin layer with different properties,31

typically a corrosion layer. Another application is also observed in aeroacoustic, where32

the so-called Ingard-Myers boundary conditions are used to model the presence of a33

liner located on the surface of a duct (see [26]). The presence of this layer causes34

some difficulties while discretizing the domain and numerically solving the problem.35

To overcome this problem, a classical approach consists in replacing the thin layer by36

a model with artificial boundary conditions. When considering diffusivity properties,37

this leads to introduce second-order boundary conditions, the so-called Ventcel bound-38

ary conditions, as analysed in [5]. In the second half of the 1950’s, these conditions39

were introduced in the pioneering works of Ventcel [30, 31]. The price to pay is to40

impose the smoothness of the domain in order to guaranty the well posedness of the41

second order boundary condition, which implies that the physical domain cannot be42

fitted by a polygonal mesh.43

To sum up, the main focus of this paper is to consider the numerical resolution44

∗E2S UPPA, CNRS, LMAP, UMR 5142, Université de Pau et de Pays de l’Adour, Pau, 64000,
France. (fabien.caubet@univ-pau.fr, joyce.ghantous@univ-pau.fr, charles.pierre@univ-pau.fr).

1Robust Optimal Design under Additive Manufacturing constraints: https://lma-umr5142.univ-
pau.fr/en/scientific-activities/scientific-challenges/rodam.html

1

This manuscript is for review purposes only.

mailto:fabien.caubet@univ-pau.fr
mailto:joyce.ghantous@univ-pau.fr
mailto:charles.pierre@univ-pau.fr


2 F. CAUBET, J. GHANTOUS AND C. PIERRE

of a (scalar) PDE equipped with higher order boundary conditions, which are the45

Ventcel boundary conditions, to after that assess the a priori error produced by a46

finite element approximation, on higher order meshes.47

The Ventcel problem and its approximation. Let Ω be a nonempty bounded con-48

nected domain in Rd, d = 2, 3, with a smooth boundary Γ := ∂Ω. Considering the49

source terms f and g, as well as some given constants κ ≥ 0, α, β > 0, the Ventcel50

problem that we will focus on is the following:51

(1.1)

{
−∆u+ κu = f in Ω,

−β∆Γu+ ∂nu+ αu = g on Γ,
52

where n denotes the external unit normal to Γ, ∂nu the normal derivative of u along Γ53

and ∆Γ the Laplace-Beltrami operator.54

The main objective of this work is to do an error analysis of the Ventcel Problem.55

To begin with, we need to point out that the domain Ω is required to be smooth56

due to the presence of second order boundary conditions. Actually, Ventcel boundary57

conditions would not make sense on polygonal domains. Thus, the physical domain Ω58

being non-polygonal can not be exactly fitted by the mesh domain, i.e. Ωh ̸= Ω. This59

gap between Ω and the mesh domain produces a geometric error. When using classical60

meshes made of triangles (affine meshes), this geometric error induces a saturation61

of the error at low order, independently of the considered finite element order. To62

overcome this issue, we will resort to curved meshes, following the work of many63

authors (see, e.g., [9, 10, 17, 18]). Meshes of order r (i.e. with elements of polynomial64

degree r) will be considered to improve the asymptotic behavior of the geometric65

error with respect to the mesh size h. Notice that the domain of the mesh of order r,66

denoted Ω
(r)
h , does not fit the domain Ω. However, the numerical results are expected67

to be more accurate for r ≥ 2 than for standard affine meshes.68

A Pk-Lagrangian finite element method is used with a degree k ≥ 1 to approximate69

the exact solution u of System (1.1) by a finite element function uh defined on the70

mesh domain Ω
(r)
h . One goal of the present paper is to perform an error analysis71

both considering the roles of the finite element approximation error, controlled by72

the parameter k, and the geometric error, controlled by the parameter r. We thus73

consider a non-isoparametric approach, in the sequel of the work of Demlow et al. for74

surface problems as precised later on. Doing so, one can assess which is the optimal75

degree of the finite element method k to chose depending on the geometrical degree r,76

in order to minimize the total error. Notice that an isoparametric approach, that is77

taking k = r, is treated in [17, 18, 24], for similar problems.78

Since Ω
(r)
h ̸= Ω, in order to compare the numerical solution uh defined on Ω

(r)
h to79

the exact solution u defined on Ω and to obtain a priori error estimations, the notion80

of lifting a function from a domain onto another domain needs to be introduced. The81

lift functional was firstly introduced in the 1970s by many authors (see, e.g., [14, 25,82

27, 29]). Among them, let us emphasize the lift based on the orthogonal projection83

onto the boundary Γ, introduced by Dubois in [14] and further improved in terms84

of regularity by Elliott et al. in [18]. However, the lift defined in [18] does not fit85

the orthogonal projection on the computational domain’s boundary. As will be seen86

in Section 4.1, this condition is essential to guarantee the theoretical analysis of this87

problem. In order to address this issue, an alternative definition is introduced in this88

paper which will be used to perform a numerical study of the computational error of89
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A PRIORI ERROR ESTIMATES FOR VENTCEL CONDITIONS 3

System (1.1). This modification in the lift definition has a big impact on the error90

approximation as is observed in the numerical examples in Section 7.91

Main novelties. The first innovating point presented in this work, is the definition92

of a new adequate lift satisfying a suitable trace property, as developed in Proposi-93

tion 4.3. The second novelty in this paper is the a priori error estimations, which are94

computed and expressed both in terms of finite element approximation error and of95

geometrical error, respectively, associated to the finite element degree k ≥ 1 and to96

the mesh order r ≥ 1. This follows the works of Demlow [4, 12, 13] on surface prob-97

lems, where he considered a non isoparametric approach with k ̸= r, in order to do98

an error analysis. In the existing works such as [17], error estimates of Problem (1.1)99

were established using the lift defined in [18], while considering an isoparametric ap-100

proach and taking k = r. In [18], while also taking an isoparametric approach, a101

thorough error analysis is made on a coupled bulk–surface partial differential equa-102

tion with Ventcel boundary conditions. In [23], the well-posedness and regularity103

of System (1.1) is rigorously studied. Eventually, this paper also brings to the fore104

an interesting super convergence property of quadratic meshes, numerically observed105

both in dimension 2 and 3.106

We present the following a priori error estimations, which will be explained in
details and proved in Section 6:

∥u− uℓ
h∥L2(Ω,Γ) = O(hk+1 + hr+1) and ∥u− uℓ

h∥H1(Ω,Γ) = O(hk + hr+1/2),

where h is the mesh size and uℓ
h denotes the lift of uh (given in Definition 4.2),107

and L2(Ω,Γ) and H1(Ω,Γ) are Hilbert spaces defined below.108

Paper organization. Section 2 contains all the mathematical tools and useful def-109

initions to derive the weak formulation of System (1.1). Section 3 is devoted to the110

definition of the high order meshes. In Section 4, are defined the volume and surface111

lifts, which are the keystones of this work. A Lagrangian finite element space and112

discrete formulation of System (1.1) are presented in Section 5, alongside their lifted113

forms onto Ω. The a priori error analysis is detailed in Section 6. The paper wraps up114

in Section 7 with 2D and 3D numerical experiments studying the method convergence115

rate dependency on the geometrical order r and on the finite element degree k.116

2. Notations and needed mathematical tools. Firstly, let us introduce the
notations that we adopt in this paper. Throughout this paper, Ω is a nonempty
bounded connected open subset of Rd (d = 2, 3) with a smooth (at least C2) bound-
ary Γ := ∂Ω. The unit normal to Γ pointing outwards is denoted by n and ∂nu is a nor-
mal derivative of a function u. We denote respectively by L2(Ω) and L2(Γ) the usual
Lebesgue spaces endowed with their standard norms on Ω and Γ. Moreover, for k ≥ 1,
Hk+1(Ω) denotes the usual Sobolev space endowed with its standard norm. We also
consider the Sobolev spaces Hk+1(Γ) on the boundary as defined e.g. in [23, §2.3]. It
is recalled that the norm on H1(Γ) is: ∥u∥2H1(Γ) := ∥u∥2L2(Γ)+∥∇Γu∥2L2(Γ), where ∇Γ is

the tangential gradient defined below; and that ∥u∥2Hk+1(Γ) := ∥u∥2Hk(Γ)+∥∇Γu∥2Hk(Γ).

Throughout this work, we rely on the following Hilbert space (see [23])

H1(Ω,Γ) := {u ∈ H1(Ω), u|Γ ∈ H1(Γ)},

equipped with the norm ∥u∥2H1(Ω,Γ) := ∥u∥2H1(Ω) + ∥u∥2H1(Γ). In a similar way is de-117

fined the following space L2(Ω,Γ) := {u ∈ L2(Ω), u|Γ ∈ L2(Γ)}, equipped with the118

norm ∥u∥2L2(Ω,Γ) := ∥u∥2L2(Ω) + ∥u∥2L2(Γ). More generally, we define Hk+1(Ω,Γ) :=119

{u ∈ Hk+1(Ω), u|Γ ∈ Hk+1(Γ)}.120

This manuscript is for review purposes only.



4 F. CAUBET, J. GHANTOUS AND C. PIERRE

Secondly, we recall the definition of the tangential operators (see, e.g., [22]).121

Definition 2.1. Let w ∈ H1(Γ), W ∈ H1(Γ,Rd) and u ∈ H2(Γ). Then the122

following operators are defined on Γ:123

• the tangential gradient of w given by ∇Γw := ∇w̃ − (∇w̃ · n)n, where w̃ ∈124

H1(Rd) is any extension of w;125

• the tangential divergence of W given by divΓW := divW̃ − (DW̃n) · n,126

where W̃ ∈ H1(Rd,Rd) is any extension of W and DW̃ = (∇W̃i)
d
i=1 is the127

differential matrix of the extension W̃ ;128

• the Laplace-Beltrami operator of u given by ∆Γu := divΓ(∇Γu).129

Additionally, the constructions of the mesh used in Section 3 and of the lift130

procedure presented in Section 4 are based on the following fundamental result that131

may be found in [11] and [20, §14.6]. For more details on the geometrical properties132

of the tubular neighborhood and the orthogonal projection defined below, we refer133

to [12, 13, 16].134

Proposition 2.2. Let Ω be a nonempty bounded connected open subset of Rd135

with a C2 boundary Γ = ∂Ω. Let d : Rd → R be the signed distance function with136

respect to Γ defined by,137

d(x) :=

 −dist(x,Γ) if x ∈ Ω,
0 if x ∈ Γ,
dist(x,Γ) otherwise,

with dist(x,Γ) := inf{|x− y|, y ∈ Γ}.138

Then there exists a tubular neighborhood UΓ := {x ∈ Rd; |d(x)| < δΓ} of Γ, of suffi-139

ciently small width δΓ, where d is a C2 function. Its gradient ∇d is an extension of140

the external unit normal n to Γ. Additionally, in this neighborhood UΓ, the orthogonal141

projection b onto Γ is uniquely defined and given by,142

b : x ∈ UΓ 7−→ b(x) := x− d(x)∇d(x) ∈ Γ.143

Finally, the variational formulation of Problem (1.1) is obtained, using the inte-144

gration by parts formula on the surface Γ (see, e.g. [22]), and is given by,145

(2.1) find u ∈ H1(Ω,Γ) such that a(u, v) = l(v), ∀ v ∈ H1(Ω,Γ),146

where the bilinear form a, defined on H1(Ω,Γ)2, is given by,

a(u, v) :=

∫
Ω

∇u · ∇v dx+ κ

∫
Ω

uv dx+ β

∫
Γ

∇Γu · ∇Γv dσ + α

∫
Γ

uv dσ,

and the linear form l, defined on H1(Ω,Γ), is given by,

l(v) :=

∫
Ω

fv dx+

∫
Γ

gv dσ.

The following theorem claims the well-posedness of the problem (2.1) proven in [8,147

th. 2] and [23, th. 3.3] and establishes the solution regularity proven in [23, th. 3.4].148

Theorem 2.3. Let Ω and Γ = ∂Ω be as stated previously. Let α, β > 0, κ ≥ 0,149

and f ∈ L2(Ω), g ∈ L2(Γ). Then there exists a unique solution u ∈ H1(Ω,Γ) to150

problem (2.1).151

Moreover, if Γ is of class Ck+1, and f ∈ Hk−1(Ω), g ∈ Hk−1(Γ), then the solu-
tion u of (2.1) is in Hk+1(Ω,Γ) and is the strong solution of the Ventcel problem (1.1).
Additionally, there exists c > 0 such that the following inequality holds,

∥u∥Hk+1(Ω,Γ) ≤ c(∥f∥Hk−1(Ω) + ∥g∥Hk−1(Γ)).
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3. Curved mesh definition. In this section we briefly recall the construction152

of curved meshes of geometrical order r ≥ 1 of the domain Ω and introduce some153

notations. We refer to [8, Section 2] for details and examples (see also [18, 29, 14, 1]).154

Recall for r ≥ 1, the set of polynomials in Rd of order r or less is denoted by Pr.155

From now on, the domain Ω, is assumed to be at least Cr+2 regular, and T̂ denotes156

the reference simplex of dimension d. In a nutshell, the way to proceed is the following.157

1. Construct an affine mesh T (1)
h of Ω composed of simplices T and define the158

affine transformation FT : T̂ → T := FT (T̂ ) associated to each simplice T .159

2. For each simplex T ∈ T (1)
h , a mapping F

(e)
T : T̂ → T (e) := F

(e)
T (T̂ ) is designed160

and the resulting exact elements T (e) will form a curved exact mesh T (e)
h of Ω.161

3. For each T ∈ T (1)
h , the mapping F

(r)
T is the Pr interpolant of F

(e)
T . The curved162

mesh T (r)
h of order r is composed of the elements T (r) := F

(r)
T (T̂ ).163

3.1. Affine mesh T (1)
h . Let T (1)

h be a polyhedral mesh of Ω made of simplices164

of dimension d (triangles or tetrahedra), it is chosen as quasi-uniform and henceforth165

shape-regular (see [7, definition 4.4.13]). Define the mesh size h := max{diam(T ); T ∈166

T (1)
h }, where diam(T ) is the diameter of T . The mesh domain is denoted by Ω

(1)
h :=167

∪
T∈T (1)

h

T . Its boundary denoted by Γ
(1)
h := ∂Ω

(1)
h is composed of (d− 1)-dimensional168

simplices that form a mesh of Γ = ∂Ω. The vertices of Γ
(1)
h are assumed to lie on Γ.169

For T ∈ T (1)
h , we define an affine function that maps the reference element onto T ,

FT : T̂ → T := FT (T̂ )

170

Remark 3.1. For a sufficiently small mesh size h, the mesh boundary satisfies171

Γ
(1)
h ⊂ UΓ, where UΓ is the tubular neighborhood given in proposition 2.2. This172

guaranties that the orthogonal projection b : Γ
(1)
h → Γ is one to one which is required173

for the construction of the exact mesh.174

3.2. Exact mesh T (e)
h . In the 1970’s, Scott gave an explicit construction of an175

exact triangulation in two dimensions in [29], generalised by Lenoir in [25] afterwards176

(see also [18, §4] and [17, §3.2]). The present definition of an exact transformation F
(e)
T177

combines the definitions found in [25, 29] with the projection b as used in [14].178

Let us first point out that for a sufficiently small mesh size h, a mesh element T179

cannot have d + 1 vertices on the boundary Γ, due to the quasi uniform assumption180

imposed on the mesh T (1)
h . A mesh element is said to be an internal element if it has181

at most one vertex on the boundary Γ.182

Definition 3.2. Let T ∈ T (1)
h be a non-internal element (having at least 2 ver-183

tices on the boundary). Denote vi = FT (v̂i) as its vertices, where v̂i are the vertices184

of T̂ . We define εi = 1 if vi ∈ Γ and εi = 0 otherwise. To x̂ ∈ T̂ is associated its185

barycentric coordinates λi associated to the vertices v̂i of T̂ and λ∗(x̂) :=
∑d+1

i=1 εiλi186

(shortly denoted by λ∗). Finally, we define σ̂ := {x̂ ∈ T̂ ;λ∗(x̂) = 0} and the func-187

tion ŷ :=
1

λ∗
∑d+1

i=1 εiλiv̂i ∈ T̂ , which is well defined on T̂\σ̂.188

Consider a non-internal mesh element T ∈ T (1)
h , having at least 2 vertices on the189

boundary, and the affine transformation FT . In the two dimensional case, FT (σ̂) will190

consist of the only vertex of T that is not on the boundary Γ. In the three dimensional191
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T̂

• •

•

v̂1 v̂2

v̂3

•
• ŷx̂

FT T

•

•

•v2

v3

v1
Γ

•
•

y

x

Fig. 1: Visualisation of the two functions ŷ : T̂ 7→ T̂ and y : T 7→ ∂T ∩ Γ in
definition 3.3 in a 2D case

case, the tetrahedral T either has 2 or 3 vertices on the boundary. In the first case,192

FT (σ̂) is the edge of T joining its two internal vertices. In the second case, FT (σ̂) is193

the only vertex of T .194

Definition 3.3. We denote T (e)
h the mesh consisting of all exact elements T (e) =195

F
(e)
T (T̂ ), where F

(e)
T = FT for all internal elements, as for the case of non-internal196

elements F
(e)
T is given by,197

(3.1) F
(e)
T : T̂ −→ T (e) := F

(e)
T (T̂ )

x̂ 7−→ F
(e)
T (x̂) :=

{
x if x̂ ∈ σ̂,

x+ (λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂,

198

with x = FT (x̂) and y = FT (ŷ). It has been proven in [18] that F
(e)
T is a C1-199

diffeomorphism and Cr+1 regular on T̂ .200

Remark 3.4. For x ∈ T ∩ Γh, we have that λ∗ = 1 and so y = x inducing201

that F
(e)
T (x̂) = b(x). Then F

(e)
T ◦ F−1

T = b on T ∩ Γh.202

3.3. Curved mesh T (r)
h of order r. The exact mapping F

(e)
T , defined in (3.1),203

is interpolated as a polynomial of order r ≥ 1 in the classical Pr-Lagrange basis on T̂ .204

The interpolant is denoted by F
(r)
T , which is a C1-diffeomorphism and is in Cr+1(T̂ )205

(see [9, chap. 4.3]). For more exhaustive details and properties of this transformation,206

we refer to [18, 10, 9]. Note that, by definition, F
(r)
T and F

(e)
T coincide on all Pr-207

Lagrange nodes. The curved mesh of order r is T (r)
h := {T (r);T ∈ T (1)

h }, Ω(r)
h :=208

∪
T (r)∈T (r)

h

T (r) is the mesh domain and Γ
(r)
h := ∂Ω

(r)
h is its boundary.209

4. Functional lift. We recall that r ≥ 1 is the geometrical order of the curved210

mesh. With the help of aforementioned transformations, we define lifts to transform211

a function on a domain Ω
(r)
h or Γ

(r)
h into a function defined on Ω or Γ respectively, in212

order to compare the numerical solutions to the exact one.213

We recall that the idea of lifting a function from the discrete domain onto the214

continuous one was already treated and discussed in many articles dating back to the215

1970’s, like [27, 29, 25, 1] and others. Surface lifts were firstly introduced in 1988216

by Dziuk in [15], to the extend of our knowledge, and discussed in more details and217

applications by Demlow in many of his articles (see [12, 13, 2, 4]).218

4.1. Surface and volume lift definitions.219
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Definition 4.1 (Surface lift). Let uh ∈ L2(Γ
(r)
h ). The surface lift uL

h ∈ L2(Γ)
associated to uh is defined by,

uL
h ◦ b := uh,

where b : Γ
(r)
h → Γ is the orthogonal projection, defined in Proposition 2.2. Likewise,220

to u ∈ L2(Γ) is associated its inverse lift u−L given by, u−L := u ◦ b ∈ L2(Γ
(r)
h ).221

The use of the orthogonal projection b to define the surface lift is natural since b is222

well defined on the tubular neighborhood UΓ of Γ (see Proposition 2.2) and henceforth223

on Γ
(r)
h ⊂ UΓ for sufficiently small mesh size h.224

A volume lift is defined, using the notations in definition 3.2, we introduce the225

transformation G
(r)
h : Ω

(r)
h → Ω (see figure 2) given piecewise for all T (r) ∈ T (r)

h by,226

(4.1) G
(r)
h |

T (r)
:= F

(e)

T (r) ◦ (F
(r)
T )−1, F

(e)

T (r)(x̂) :=

{
x if x̂ ∈ σ̂

x+ (λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂ ,227

with x := F
(r)
T (x̂) and y := F

(r)
T (ŷ) (see figure 1 for the affine case). Notice that this228

implies that G
(r)
h |

T (r)
= id|

T (r)
, for any internal mesh element T (r) ∈ T (r)

h . Note229

that, by construction, G
(r)
h is globally continuous and piecewise differentiable on each230

mesh element. For the remainder of this article, the following notations are crucial.231

DG
(r)
h denotes the differential of G

(r)
h , (DG

(r)
h )t is its transpose and Jh is its Jacobin.232

T (2)

•

•

•v1

v3

v2

v5

v4

v6

•

• •

Γ

G
(2)
h

Γ

T (e)

•

•

•v1

v3

v2

v5

v4

v6

•

• •

Fig. 2: Visualisation of G
(2)
h : T (2) → T (e) in a 2D case, for a quadratic case r = 2.

Definition 4.2 (Volume lift). Let uh ∈ L2(Ω
(r)
h ). We define the volume lift

associated to uh, denoted uℓ
h ∈ L2(Ω), by,

uℓ
h ◦G(r)

h := uh.

In a similar way, to u ∈ L2(Ω) is associated its inverse lift u−ℓ ∈ L2(Ω
(r)
h ) given233

by u−ℓ := u ◦G(r)
h .234

Proposition 4.3. The volume and surface lifts coincide on Γ
(r)
h ,235

∀ uh ∈ H1(Ω
(r)
h ), (Tr uh)

L
= Tr(uℓ

h).236

Consequently, the surface lift vLh (resp. the inverse lift v−L) will now be simply denoted237

by vℓh (resp. v−ℓ).238
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8 F. CAUBET, J. GHANTOUS AND C. PIERRE

Proof. Taking x ∈ T (r) ∩ Γ
(r)
h , x̂ = (F

(r)
T )(−1)(x) satisfies λ∗ = 1 and so ŷ = x̂

and y = x. Thus F
(e)

T (r)(x̂) = b(x), in other words,

G
(r)
h (x) = F

(e)

T (r) ◦ (F
(r)
T )−1(x) = b(x), ∀ x ∈ T (r) ∩ Γ

(r)
h .

Proposition 4.4. Let T (r) ∈ T (r)
h . Then the mapping G

(r)
h |

T (r)
is Cr+1(T (r))239

regular and a C1- diffeomorphism from T (r) onto T (e). Additionally, for a sufficiently240

small mesh size h, there exists a constant c > 0, independent of h, such that,241

(4.2) ∀ x ∈ T (r), ∥DG
(r)
h (x)− Id∥ ≤ chr and |Jh(x)− 1| ≤ chr,242

where G
(r)
h is defined in (4.1) and Jh is its Jacobin.243

The full proof of this proposition is partially adapted from [18] and has been detailed244

in appendix A.245

Remark 4.5 (Lift regularity). The lift transformation G
(r)
h : Ω

(r)
h → Ω in (4.1)246

involves the function,247

ρT (r) : x̂ ∈ T̂ 7→ (λ∗)s(b(y)− y),248

with an exponent s = r + 2 inherited from [18]: this exponent value guaranties249

the Cr+1 (piecewise) regularity of the function G
(r)
h . However, decreasing that value250

to s = 2 still ensures that G
(r)
h is a (piecewise) C1 diffeomorphism and also that251

Inequalities (4.2) hold: this can be seen when examining the proof of Proposition 4.4 in252

Appendix A. Consequently, the convergence theorem 6.1 still holds when setting s = 2253

in the definition of ρT (r) .254

Remark 4.6 (Former lift definition). The volume lift defined in (4.2) is an adap-
tation of the lift definition in [18], which however does not fulfill Proposition 4.3.

Precisely, in [18], to uh ∈ H1(Ω
(r)
h ) is associated the lifted function ueℓ

h ∈ H1(Ω),

given by ueℓ
h ◦ Gh := uh, where Gh : Ω

(r)
h → Ω is defined piecewise, for each mesh

element T (r) ∈ T (r)
h , by Gh|

T (r)
:= F

(e)
T ◦ (F (r)

T )−1, where T is the affine element rela-

tive to T (r), F
(e)
T is defined in (3.1) and F

(r)
T is its Pr-Lagrangian interpolation given

in section 3.3. However, this transformation does not coincide with the orthogonal

projection b, on the mesh boundary Γ
(r)
h . Indeed, since F

(e)
T ◦F−1

T = b on T ∩Γh (see
Remark 3.4), we have,

Gh(x) = b ◦ FT ◦ (F (r)
T )−1(x) ̸= b(x), ∀ x ∈ Γ

(r)
h ∩ T (r).

Consequently in this case, (Tr uh)
L ̸= Tr(ueℓ

h ).255

4.2. Lift of the variational formulation. With the lift operator, one may256

express an integral over Γ
(r)
h (resp. Ω

(r)
h ) with respect to one over Γ ( resp. Ω), as will257

be discussed in this section.258

Surface integrals. In this subsection, all results stated may be found alongside259

their proofs in [12, 3], but we recall some necessary informations for the sake of260

completeness. For extensive details, we also refer to [13, 16, 15]. Throughout the rest261

of the paper, dσ and dσh denote respectively the surface measures on Γ and on Γ
(r)
h .262

Let Jb be the Jacobian of the orthogonal projection b, defined in Proposition 2.2,263

such that dσ(b(x)) = Jb(x) dσh(x), for all x ∈ Γ
(r)
h . Notice that Jb is bounded264
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independently of h and its detailed expression may be found in [12, 13]. Consider also265

the lift of Jb given by Jℓ
b ◦ b = Jb (see Definition 4.1).266

Let uh, vh ∈ H1(Γh) with uℓ
h, v

ℓ
h ∈ H1(Γ) as their respected lifts. Then, one has,267

(4.3)

∫
Γ
(r)
h

uhvh dσh =

∫
Γ

uℓ
hv

ℓ
h

dσ

Jℓ
b

.268

A similar equation may be written with tangential gradients. We start by given
the following notations. We denote the outer unit normal vector over Γ by n and

the outer unit normal vector over Γ
(r)
h = ∂Ω

(r)
h by nhr. Denote P := Id − n ⊗ n

and Ph := Id−nhr⊗nhr respectively as the orthogonal projections over the tangential

spaces of Γ and Γ
(r)
h . Additionally, the Weingarten map H : Rd → Rd×d is given

by H := D2d, where d is the signed distance function (see Proposition 2.2). With the
previous notations, we have,

∇Γh
vh(x) = Ph(I − dH)P∇Γv

ℓ
h(b(x)), ∀ x ∈ Γ

(r)
h .

Using this equality, we may derive the following expression,269

(4.4)

∫
Γ
(r)
h

∇
Γ
(r)
h

uh · ∇
Γ
(r)
h

vh dσh =

∫
Γ

Aℓ
h∇Γu

ℓ
h · ∇Γv

ℓ
h dσ,270

where Aℓ
h is the lift of the matrix Ah given by,271

(4.5) Ah(x) :=
1

Jb(x)
P (I − dH)Ph(I − dH)P (x), ∀ x ∈ Γ

(r)
h .272

273

Volume integrals. Similarly, consider uh, vh ∈ H1(Ωh) and let uℓ
h, v

ℓ
h ∈ H1(Ω) be274

their respected lifts (see Definition 4.2), we have,275

(4.6)

∫
Ωh

uhvh dx =

∫
Ω

uℓ
hv

ℓ
h

1

Jℓ
h

dy,276

where Jh denotes the Jacobian of G
(r)
h and Jℓ

h is its lift given by Jℓ
h ◦G(r)

h = Jh.277

Additionally, the gradient can be written as follows, for any x ∈ Ω
(r)
h ,

∇vh(x) = ∇(vℓh ◦G(r)
h )(x) = TDG

(r)
h (x)(∇vℓh) ◦ (G

(r)
h (x)).

Using a change of variables z = G
(r)
h (x) ∈ Ω, one has, (∇vh)

ℓ(z) = TDG
(r)
h (x)∇vℓh(z).278

Finally, introducing the notation,279

(4.7) G(r)
h (z) := TDG

(r)
h (x),280

one has,281

(4.8)

∫
Ω

(r)
h

∇uh · ∇vh dx =

∫
Ω

G(r)
h (∇uℓ

h) · G
(r)
h (∇vℓh)

dx

Jℓ
h

.282

4.3. Useful estimations.283
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Surface estimations. We recall two important estimates proved in [12]. There284

exists a constant c > 0 independent of h such that,285

(4.9) ||Aℓ
h − P ||L∞(Γ) ≤ chr+1 and

∥∥∥∥1− 1

Jℓ
b

∥∥∥∥
L∞(Γ)

≤ chr+1,286

where Aℓ
h is the lift of Ah defined in (4.5) and Jb is the Jacobin of the projection b.287

Volume estimations. A direct consequence of the proposition 4.4 is that both288

DG
(r)
h and Jh are bounded on every T (r) ∈ T (r)

h . As an extension of that, by Defi-289

nition 4.2 of the lift, both G(r)
h and Jℓ

h are also bounded on T (e). Additionally, the290

inequalities (4.2) will not be directly used in the error estimations in Section 6, the291

following inequalities will be used instead,292

(4.10) ∀ x ∈ T (e), ∥G(r)
h (x)− Id∥ ≤ chr and

∣∣∣∣ 1

Jℓ
h(x)

− 1

∣∣∣∣ ≤ chr,293

where G(r)
h is given in (4.7). These inequalities are a consequence of the lift applied294

on the inequalities (4.2).295

Remark 4.7. Let us emphasize that, there exists an equivalence between the Hm-296

norms over Ωh (resp. Γh) and the Hm-norms over Ω (resp. Γ), for m = 0, 1. Let297

vh ∈ H1(Ωh,Γh) and let vℓh ∈ H1(Ω,Γ) be its lift, then for m = 0, 1, there exist strictly298

positive constants independent of h such that,299

c1∥vℓh∥Hm(Ω) ≤ ∥vh∥Hm(Ωh) ≤ c2∥vℓh∥Hm(Ω),
c3∥vℓh∥Hm(Γ) ≤ ∥vh∥Hm(Γh) ≤ c4∥vℓh∥Hm(Γ).

300

The second estimations are proved in [12]. As for the first inequalities, one may301

prove them while using the equations (4.6) and (4.8). They hold due to the fact302

that Jh and DG
(r)
h (respectively 1

Jℓ
h

and G(r)
h ) are bounded on T (r) (resp. T (e)), as a303

consequence of the proposition 4.4 and the inequalities in (4.10).304

5. Finite element approximation. In this section, is presented the finite ele-305

ment approximation of problem (1.1) using Pk-Lagrange finite element approximation.306

We refer to [19, 9] for more details on finite element methods.307

5.1. Finite element spaces and interpolant definition. Let k ≥ 1, given a

curved mesh T (r)
h , the Pk-Lagrangian finite element space is given by,

Vh := {χ ∈ C0(Ω
(r)
h ); χ|T = χ̂ ◦ (F (r)

T )−1, χ̂ ∈ Pk(T̂ ), ∀ T ∈ T (r)
h }.

Let the Pr-Lagrangian interpolation operator be denoted by I(r) : v ∈ C0(Ω
(r)
h ) 7→

I(r)(v) ∈ Vh. The lifted finite element space (see Section 4.1 for the lift definition),
is defined by,

Vℓ
h := {vℓh; vh ∈ Vh},

and its lifted interpolation operator Iℓ given by,308

(5.1) Iℓ : C0(Ω) −→ Vℓ
h

v 7−→ Iℓ(v) :=
(
I(r)(v−ℓ)

)ℓ
.

309
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Notice that, since Ω is an open subset of R2 or R3, then we have the following Sobolev310

injection Hk+1(Ω) ↪→ C0(Ω). Thus, any function w ∈ Hk+1(Ω) may be associated to311

an interpolation element Iℓ(w) ∈ Vℓ
h.312

The lifted interpolation operator plays a part in the error estimation and the fol-313

lowing interpolation inequality will display the finite element error in the estimations.314

Proposition 5.1. Let v ∈ Hk+1(Ω,Γ) and 2 ≤ m ≤ k + 1. There exists a
constant c > 0 independent of h such that the interpolation operator Iℓ satisfies the
following inequality,

∥v − Iℓv∥L2(Ω,Γ) + h∥v − Iℓv∥H1(Ω,Γ) ≤ chm∥v∥Hm(Ω,Γ).

Proof. This inequality derives from given interpolation theory, see [1, Corol-315

lary 4.1] and [6] for norms over Ω and [12, 13] for norms over Γ. One also needs316

to use the following inequality, ∥v−ℓ∥Hm(T (r)) ≤ c∥v∥Hm(T (e)), for 0 ≤ m ≤ k + 1,317

where the constant c is independent of h. This inequality follows from a change of318

variables and the fact that DmG
(r)
h = Id + Dm(ρT (r) ◦ (F

(r)
T )−1) is locally bounded319

independently of h, which is easily proved using [10, page 19] and (A.7).320

5.2. Finite element formulation. From now on, to simplify the notations, we321

denote Ωh and Γh to refer to Ω
(r)
h and Γ

(r)
h , for any geometrical order r ≥ 1.322

Discrete formulation. Given f ∈ L2(Ω) and g ∈ L2(Γ) the right hand side of
Problem (1.1), we define (following [18, 12]) the following linear form lh on Vh by,

lh(vh) :=

∫
Ωh

vhf
−ℓJh dx+

∫
Γh

vhg
−ℓJb dσh,

where Jh (resp. Jb) is the Jacobin of G
(r)
h (resp. the orthogonal projection b). With323

this definition, lh(vh) = l(vℓh), for any vh ∈ Vh, where l is the right hand side in the324

formulation (2.1).325

The approximation problem is to find uh ∈ Vh such that,326

(5.2) ah(uh, vh) = lh(vh), ∀ vh ∈ Vh,327

where ah is the following bilinear form, defined on Vh × Vh,328

ah(uh, vh) :=

∫
Ωh

∇uh · ∇vh dx+ κ

∫
Ωh

uhvh dx329

+ β

∫
Γh

∇Γh
uh · ∇Γh

vh dσh + α

∫
Γh

uhvh dσh,330

331

Remark 5.2. Since ah is bilinear symmetric positively defined on a finite dimen-332

sional space, then there exists a unique solution uh ∈ Vh to the discrete problem (5.2).333

Lifted discrete formulation. We define the lifted bilinear form aℓh, defined on
Vℓ

h × Vℓ
h, throughout,

aℓh(u
ℓ
h, v

ℓ
h) = ah(uh, vh) for uh, vh ∈ Vh,

applying (4.8), (4.6), (4.4) and (4.3), its expression is given by,334
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aℓh(u
ℓ
h, v

ℓ
h) =

∫
Ω

G(r)
h (∇uℓ

h) · G
(r)
h (∇vℓh)

dx

Jℓ
h

+ β

∫
Γ

Aℓ
h∇Γu

ℓ
h · ∇Γv

ℓ
h dσ335

+ κ

∫
Ω

(uh)
ℓ(vh)

ℓ dx

Jℓ
h

+ α

∫
Γ

(uh)
ℓ(vh)

ℓ dσ

Jℓ
b

.336

Keeping in mind that u is the solution of (2.1) and uℓ
h is the lift of the solution337

of (5.2), for any vℓh ∈ Vℓ
h ⊂ H1(Ω,Γ), we notice that,338

(5.3) a(u, vℓh) = l(vℓh) = lh(vh) = ah(uh, vh) = aℓh(u
ℓ
h, v

ℓ
h).339

Using the previous points, we can also define the lifted formulation of the discrete
problem (5.2) by: find uℓ

h ∈ Vℓ
h such that,

aℓh(u
ℓ
h, v

ℓ
h) = l(vℓh), ∀ vℓh ∈ Vℓ

h.

6. Error analysis. Throughout this section, we consider that the mesh size h340

is sufficiently small and that c refers to a positive constant independent of the mesh341

size h. From now on, the domain Ω, is assumed to be at least Ck+1 regular, and342

the source terms in problem (1.1) are assumed more regular: f ∈ Hk−1(Ω) and g ∈343

Hk−1(Γ). Then according to [23, Theorem 3.4], the exact solution u of Problem (1.1)344

is in Hk+1(Ω,Γ).345

Our goal in this section is to prove the following theorem.346

Theorem 6.1. Let u ∈ Hk+1(Ω,Γ) be the solution of the variational problem (2.1)347

and uh ∈ Vh be the solution of the finite element formulation (5.2). There exists a348

constant c > 0 such that for a sufficiently small mesh size h,349

(6.1) ∥u− uℓ
h∥H1(Ω,Γ) ≤ c(hk + hr+1/2) and ∥u− uℓ

h∥L2(Ω,Γ) ≤ c(hk+1 + hr+1),350

where uℓ
h ∈ Vℓ

h denotes the lift of uh onto Ω, given in Definition 4.2.351

The overall error in this theorem is composed of two components: the geometrical352

error and the finite element error. To prove these error bounds, we proceed as follows:353

1. estimate the geometric error: we bound the difference between the exact354

bilinear form a and the lifted bilinear form aℓh;355

2. bound the H1 error using the geometric and interpolation error estimation,356

proving the first inequality of (6.1);357

3. an Aubin-Nitsche argument helps us prove the second inequality of (6.1).358

6.1. Geometric error. First of all, we introduce Bℓ
h ⊂ Ω as the union of all the

non-internal elements of the exact mesh T (e)
h ,

Bℓ
h = { T (e) ∈ T (e)

h ; T (e) has at least two vertices on Γ}.

Note that, by definition of Bℓ
h, we have,359

(6.2)
1

Jℓ
h

− 1 = 0 and G(r)
h − Id = 0 in Ω\Bℓ

h.360

The following corollary involving Bℓ
h is a direct consequence of [18, Lemma 4.10]361

or [21, Theorem 1.5.1.10].362

Corollary 6.2. Let v ∈ H1(Ω) and w ∈ H2(Ω). Then, for a sufficiently small h,363

there exists c > 0 such that the following inequalities hold,364

(6.3) ∥v∥L2(Bℓ
h)

≤ ch1/2∥v∥H1(Ω) and ∥w∥H1(Bℓ
h)

≤ ch1/2∥w∥H2(Ω).365
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The difference between a and ah, referred to as the geometric error, is evaluated in366

the following proposition.367

Proposition 6.3. Consider v, w ∈ Vℓ
h. Then for a sufficiently small h, there368

exists c > 0, such that the following geometric error estimation hold,369

(6.4) |a(v, w)−aℓh(v, w)| ≤ chr∥∇v∥L2(Bℓ
h)
∥∇w∥L2(Bℓ

h)
+chr+1∥v∥H1(Ω,Γ)∥w∥H1(Ω,Γ).370

The following proof is inspired by [18, Lemma 6.2]. The main difference is the use371

of the modified lift given in definition 4.2 and the corresponding transformation G
(r)
h372

alongside its associated matrix G(r)
h , defined in (4.7), which leads to several changes373

in the proof.374

Proof. Let v, w ∈ Vℓ
h. By the definitions of the bilinear forms a and aℓh, we have,

|a(v, w)− aℓh(v, w)| ≤ a1(v, w) + κa2(v, w) + βa3(v, w) + αa4(v, w),

where the terms ai, defined on Vℓ
h × Vℓ

h, are respectively given by,375

a1(v, w) :=

∣∣∣∣∫
Ω

∇w · ∇v − G(r)
h ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣ , a2(v, w) :=

∣∣∣∣∫
Ω

wv (1− 1

Jℓ
h

) dx

∣∣∣∣ ,
a3(v, w) :=

∣∣∣∣∫
Γ

(Aℓ
h − Id) ∇Γw · ∇Γv dσ

∣∣∣∣ , a4(v, w) :=

∣∣∣∣∫
Γ

wv (1− 1

Jℓ
b

) dσ

∣∣∣∣ .376

The next step is to bound each ai, for i = 1, 2, 3, 4, while using (4.10) and (4.9).377

First of all, notice that a1(v, w) ≤ Q1 +Q2 +Q3, where,378

Q1 :=

∣∣∣∣∫
Ω

(G(r)
h − Id) ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣ ,379

Q2 :=

∣∣∣∣∫
Ω

∇w · (G(r)
h − Id)∇v

1

Jℓ
h

dx

∣∣∣∣ ,380

Q3 :=

∣∣∣∣∫
Ω

∇w · ∇v(
1

Jℓ
h

− 1) dx

∣∣∣∣ .381

We use (6.2) and (4.10) to estimate each Qj as follows,382

Q1 =

∣∣∣∣∣
∫
Bℓ

h

(G(r)
h − Id) ∇w · G(r)

h ∇v
1

Jℓ
h

dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
,383

Q2 =

∣∣∣∣∣
∫
Bℓ

h

∇w · (G(r)
h − Id)∇v

1

Jℓ
h

dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
,384

Q3 =

∣∣∣∣∣
∫
Bℓ

h

∇w · ∇v(
1

Jℓ
h

− 1) dx

∣∣∣∣∣ ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
.385

Summing up the latter terms, we get, a1(v, w) ≤ chr∥∇w∥L2(Bℓ
h)
∥∇v∥L2(Bℓ

h)
.386

Similarly, to bound a2, we proceed by using (6.2) and (4.10) as follows,387

a2(v, w) =

∣∣∣∣∣
∫
Bℓ

h

wv (1− 1

Jℓ
h

) dx

∣∣∣∣∣ ≤ chr∥w∥L2(Bℓ
h)
∥v∥L2(Bℓ

h)
.388
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Since v, w ∈ Vℓ
h ⊂ H1(Ω,Γ), we use (6.3) to get,

a2(v, w) ≤ chr+1∥w∥H1(Ω)∥v∥H1(Ω).

Before estimating a3, we need to notice that, by definition of the tangential gra-389

dient over Γ, P∇Γ = ∇Γ where P = Id− n⊗ n is the orthogonal projection over the390

tangential spaces of Γ. With the estimate (4.9), we get,391

a3(v, w) =

∣∣∣∣∫
Γ

(Aℓ
h − P ) ∇Γw · ∇Γv dσ

∣∣∣∣392

≤ ||Aℓ
h − P ||L∞(Γ)∥w∥H1(Γ)∥v∥H1(Γ) ≤ chr+1∥w∥H1(Γ)∥v∥H1(Γ).393

Finally, using (4.9), we estimate a4 as follows,394

a4(v, w) =

∣∣∣∣∫
Γ

wv (1− 1

Jℓ
b

) dσ

∣∣∣∣ ≤ chr+1∥w∥L2(Γ)∥v∥L2(Γ).395

The inequality (6.4) is easy to obtain when summing up ai, for all i = 1, 2, 3, 4.396

Remark 6.4. Let us point out that, with u (resp. uh) the solution of the prob-397

lem (2.1) (resp. (5.2)), we have,398

(6.5) ∥uℓ
h∥H1(Ω,Γ) ≤ c∥u∥H1(Ω,Γ),399

where c > 0 is independent with respect to h. In fact, a relatively easy way to prove400

it is by employing the geometrical error estimation (6.4), as follows,401

cc∥uℓ
h∥2H1(Ω,Γ) ≤ a(uℓ

h, u
ℓ
h) ≤ a(uℓ

h, u
ℓ
h)− a(u, uℓ

h) + a(u, uℓ
h),402

where cc is the coercivity constant. Using (5.3), we have,403

cc∥uℓ
h∥2H1(Ω,Γ) ≤ a(uℓ

h, u
ℓ
h)− aℓh(u

ℓ
h, u

ℓ
h) + a(u, uℓ

h) = (a− aℓh)(u
ℓ
h, u

ℓ
h) + a(u, uℓ

h).404

Thus applying the estimation (6.4) along with the continuity of a, we get,405

∥uℓ
h∥2H1(Ω,Γ) ≤ chr∥∇uℓ

h∥2L2(Bℓ
h)

+ chr+1∥uℓ
h∥2H1(Ω,Γ) + c∥u∥H1(Ω,Γ)∥uℓ

h∥H1(Ω,Γ)406

≤ chr∥uℓ
h∥2H1(Ω,Γ) + c∥u∥H1(Ω,Γ)∥uℓ

h∥H1(Ω,Γ).407

Thus, we have,

(1− chr)∥uℓ
h∥2H1(Ω,Γ) ≤ c∥u∥H1(Ω,Γ)∥uℓ

h∥H1(Ω,Γ).

For a sufficiently small h, we have 1− chr > 0, which concludes the proof.408

6.2. Proof of the H1 error bound in Theorem 6.1. Let u ∈ Hk+1(Ω,Γ)409

and uh ∈ Vh be the respective solutions of (2.1) and (5.2).410

To begin with, we use the coercivity of the bilinear form a to obtain, denoting cc411

as the coercivity constant,412

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤ a(Iℓu− uℓ

h, Iℓu− uℓ
h) = a(Iℓu, Iℓu− uℓ

h)− a(uℓ
h, Iℓu− uℓ

h)413

= aℓh(u
ℓ
h, Iℓu− uℓ

h)− a(uℓ
h, Iℓu− uℓ

h) + a(Iℓu, Iℓu− uℓ
h)− aℓh(u

ℓ
h, Iℓu− uℓ

h),414
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where in the latter equation, we added and subtracted aℓh(u
ℓ
h, Iℓu− uℓ

h). Thus,415

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤

(
aℓh − a

)
(uℓ

h, Iℓu− uℓ
h) + a(Iℓu, Iℓu− uℓ

h)− aℓh(u
ℓ
h, Iℓu− uℓ

h).416

Applying (5.3) with v = Iℓu− uℓ
h ∈ Vℓ

h, we have,

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ) ≤ |(aℓh − a)(uℓ

h, Iℓu− uℓ
h)|+ |a(Iℓu− u, Iℓu− uℓ

h)|.

Taking advantage of the continuity of a and the estimate (6.4), we obtain,417

cc∥Iℓu− uℓ
h∥2H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)
∥∇(Iℓu− uℓ

h)∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ)∥Iℓu− uℓ

h∥H1(Ω,Γ)

)
+ ccont∥Iℓu− u∥H1(Ω,Γ)∥Iℓu− uℓ

h∥H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ)

+ ccont∥Iℓu− u∥H1(Ω,Γ)

)
∥Iℓu− uℓ

h∥H1(Ω,Γ).

418

Then, dividing by ∥Iℓu− uℓ
h∥H1(Ω,Γ), we have,419

∥Iℓu− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ) + ∥Iℓu− u∥H1(Ω,Γ)

)
.420

To conclude, we use the latter inequality in the following estimate as follows,421

∥u− uℓ
h∥H1(Ω,Γ) ≤ ∥u− Iℓu∥H1(Ω,Γ) + ∥Iℓu− uℓ

h∥H1(Ω,Γ)

≤ c
(
hr∥∇uℓ

h∥L2(Bℓ
h)

+ hr+1∥uℓ
h∥H1(Ω,Γ) + ∥Iℓu− u∥H1(Ω,Γ)

)422

Using the proposition 5.1 and the inequalities (6.3), we have,423

∥u− uℓ
h∥H1(Ω,Γ)

≤ chr(∥∇(uℓ
h − u)∥L2(Bℓ

h)
+ ∥∇u∥L2(Bℓ

h)
) + chr+1∥uℓ

h∥H1(Ω,Γ) + chk∥u∥Hk+1(Ω,Γ)

≤ chr(∥uℓ
h − u∥H1(Ω,Γ) + h1/2∥u∥H2(Ω)) + chr+1∥uℓ

h∥H1(Ω,Γ) + chk∥u∥Hk+1(Ω,Γ).

424

Thus we have,425

(1− chr)∥u− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr+1/2∥u∥H2(Ω) + hk∥u∥Hk+1(Ω,Γ) + hr+1∥uℓ

h∥H1(Ω,Γ)

)
.426

For a sufficiently small h, we arrive at,427

∥u− uℓ
h∥H1(Ω,Γ) ≤ c

(
hr+1/2∥u∥H2(Ω,Γ) + hk∥u∥Hk+1(Ω,Γ) + hr+1∥uℓ

h∥H1(Ω,Γ)

)
.428

This provides the desired result using (6.5).429

6.3. Proof of the L2 error bound in Theorem 6.1. Recall that u ∈ H1(Ω,Γ)
is the solution of the variational problem (2.1), uh ∈ Vh is the solution of the discrete
problem (5.2). To estimate the L2 norm of the error, we define the functional Fh by,

Fh : H1(Ω,Γ) −→ R
v 7−→ Fh(v) = a(u− uℓ

h, v).

We bound |Fh(v)| for any v ∈ H2(Ω,Γ) in Lemma 6.5. Afterwards an Aubin-Nitsche430

argument is applied to bound the L2 norm of the error.431
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Lemma 6.5. For all v ∈ H2(Ω,Γ) and for a sufficiently small h, there exists c > 0432

such that the following inequality holds,433

(6.6) |Fh(v)| ≤ c(hk+1 + hr+1)∥v∥H2(Ω,Γ).434

Remark 6.6. To prove Lemma 6.5, some key points for a function v ∈ H2(Ω,Γ)435

are presented. Firstly, inequality (6.3) implies that,436

(6.7) ∀ v ∈ H2(Ω,Γ), ∥∇v∥L2(Bℓ
h)

≤ ch1/2∥v∥H2(Ω).437

Secondly, then the interpolation inequality in proposition 5.1 gives,438

(6.8) ∀ v ∈ H2(Ω,Γ), ∥Iℓv − v∥H1(Ω,Γ) ≤ ch∥v∥H2(Ω,Γ).439

Applying 5.3 for Iℓv ∈ Vℓ
h, we have,440

(6.9) ∀ v ∈ H2(Ω,Γ), a(u, Iℓv) = l(Iℓv) = aℓh(u
ℓ
h, Iℓv).441

Proof of Lemma 6.5. Consider v ∈ H2(Ω,Γ). We may decompose |Fh(v)| in two
terms as follows,

|Fh(v)| = |a(u− uℓ
h, v)| ≤ |a(u− uℓ

h, v − Iℓv)|+ |a(u− uℓ
h, Iℓv)| =: F1 + F2.

Firstly, to bound F1, we take advantage of the continuity of the bilinear form a442

and apply the H1 error estimation (6.1), alongside the inequality (6.8) as follows,443

F1 ≤ ccont ∥u− uℓ
h∥H1(Ω,Γ)∥v − Iℓv∥H1(Ω,Γ) ≤ c(hk + hr+1/2)h∥v∥H2(Ω,Γ)444

≤ c(hk+1 + hr+3/2) ∥v∥H2(Ω,Γ).445

Secondly, to estimate F2, we resort to equations (6.9) and (6.4) as follows,446

F2 = |a(u, Iℓv)− a(uℓ
h, Iℓv)| = |aℓh(uℓ

h, Iℓv)− a(uℓ
h, Iℓv)| = |(aℓh − a)(uℓ

h, Iℓv)|447

≤ chr∥∇uℓ
h∥L2(Bℓ

h)
∥∇(Iℓv)∥L2(Bℓ

h)
+ chr+1∥uℓ

h∥H1(Ω,Γ)∥Iℓv∥H1(Ω,Γ).448

Next, we will treat the first term in the latter inequality separately. We have,449

F3 := hr∥∇uℓ
h∥L2(Bℓ

h)
∥∇(Iℓv)∥L2(Bℓ

h)
450

≤ hr
(
∥∇(uℓ

h − u)∥L2(Bℓ
h)

+ ∥∇u∥L2(Bℓ
h)

)(
∥∇(Iℓv − v)∥L2(Bℓ

h)
+ ∥∇v∥L2(Bℓ

h)

)
451

≤ hr
(
∥uℓ

h − u∥H1(Ω,Γ) + ∥∇u∥L2(Bℓ
h)

)(
∥Iℓv − v∥H1(Ω,Γ) + ∥∇v∥L2(Bℓ

h)

)
.452

We now apply the H1 error estimation (6.1), the inequality (6.7) and the interpolation453

inequality (6.8), as follows,454

F3 ≤ c hr
(
hk + hr+1/2 + h1/2∥u∥H2(Ω,Γ)

)(
h∥v∥H2(Ω,Γ) + h1/2∥v∥H2(Ω,Γ)

)
455

≤ c hr h1/2
(
hk−1/2 + hr + ∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
h1/2∥v∥H2(Ω,Γ)456

≤ c hr+1
(
hk−1/2 + hr + ∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
∥v∥H2(Ω,Γ).457

Noticing that k−1/2 > 0 (since k ≥ 1) and that
(
hk−1/2+hr+∥u∥H2(Ω,Γ)

)(
h1/2 + 1

)
is bounded by a constant independent of h, we obtain F3 ≤ c hr+1∥v∥H2(Ω,Γ). Using
the previous expression of F2,

F2 ≤ chr+1∥v∥H2(Ω,Γ) + chr+1∥uℓ
h∥H1(Ω,Γ)∥Iℓv∥H1(Ω,Γ).
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Moreover, noticing that ∥Iℓv∥H1(Ω,Γ) ≤ c∥v∥H2(Ω,Γ),

F2 ≤ chr+1∥v∥H2(Ω,Γ) + chr+1∥uℓ
h∥H1(Ω,Γ)∥v∥H2(Ω,Γ) ≤ chr+1∥v∥H2(Ω,Γ),

using (6.5). We conclude the proof by summing the estimates of F1 and F2.458

Proof of the L2 estimate (6.1). Defining e := u − uℓ
h, the aim is to estimate the459

following L2 error norm: ∥e∥2L2(Ω,Γ) = ∥u−uℓ
h∥2L2(Ω)+∥u−uℓ

h∥2L2(Γ). Let v ∈ L2(Ω,Γ).460

We define the following problem: find zv ∈ H1(Ω,Γ) such that,461

(6.10) a(w, zv) = ⟨w, v⟩L2(Ω,Γ), ∀ w ∈ H1(Ω,Γ),462

Applying Theorem 2.3 for f = v and g = v|Γ , there exists a unique solution zv ∈
H1(Ω,Γ) to (6.10), which satisfies the following inequality,

∥zv∥H2(Ω,Γ) ≤ c∥v∥L2(Ω,Γ).

Taking v = e ∈ L2(Ω,Γ) and w = e ∈ H1(Ω,Γ) in (6.10), we obtain Fh(ze) =463

a(e, ze) = ∥e∥2L2(Ω,Γ). In this case, Theorem 2.3 implies,464

(6.11) ∥ze∥H2(Ω,Γ) ≤ c∥e∥L2(Ω,Γ).465

Applying Inequality (6.6) for ze ∈ H2(Ω,Γ) and afterwards Inequality (6.11), we have,

∥e∥2L2(Ω,Γ) = |Fh(ze)| ≤ c(hk+1 + hr+1)∥ze∥H2(Ω,Γ) ≤ c(hk+1 + hr+1)∥e∥L2(Ω,Γ),

which concludes the proof.466

7. Numerical experiments. In this section are presented numerical results467

aimed to illustrate the theoretical convergence results in Theorem 6.1. Supplementary468

numerical results will be provided in order to highlight the properties of the volume469

lift introduced in definition 4.2 relatively to the lift transformation G
(r)
h : Ω

(r)
h → Ω470

given in (4.1).471

All the numerical experiments presented here have been done using the finite472

element library for curved meshes CUMIN [28]. Curved meshes of Ω of geometrical473

order 1 ≤ r ≤ 3 have been generated using the software Gmsh2. Additionally, all474

integral computations rely on quadrature rules on the reference elements which are475

always chosen of sufficiently high order: the integration errors have negligible influence476

over the forthcoming numerical results. All numerical results presented in this section477

can be fully reproduced using dedicated source codes available on CUMIN Gitlab3.478

7.1. The two dimensional case. The Ventcel problem (1.1) is considered
with α = β = κ = 1 on the unit disk Ω,{

−∆u+ u = f in Ω,
−∆Γu+ ∂nu+ u = g on Γ,

with the source terms f(x, y) = −yex and g(x, y) = yex(3 + 4x − y2) corresponding479

to the exact solution u = −f .480

The numerical solutions uh are computed for Pk finite elements, with k = 1, . . . , 4,481

on series of successively refined meshes of order r = 1, . . . , 3, as depicted on figure 3482

2Gmsh: a three-dimensional finite element mesh generator, https://gmsh.info/
3CUMIN GitLab deposit, https://plmlab.math.cnrs.fr/cpierre1/cumin
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18 F. CAUBET, J. GHANTOUS AND C. PIERRE

for coarse meshes (affine and quadratic). Each mesh counts 10 × 2n−1 edges on the483

domain boundary, for n = 1 . . . 7. On the most refined mesh using a P4 finite element484

method, we counted 10 × 26 boundary edges and approximately 75 500 triangles.485

The associated P4 finite element space has approximately 605 600 DOF (Degrees Of486

Freedom). We mention that the computation time is very fast in the present case:487

total computations roughly last one minute on a simple laptop, which are made really488

efficient with the direct solver MUMPS4 for sparse linear systems.489

Fig. 3: Numerical solution of the Ventcel problem on affine and quadratic meshes.

In order to validate numerically the latter estimates, for each mesh order r and490

each finite element degree k, the following numerical errors are computed on a series491

of refined meshes:492

∥u− uℓ
h∥L2(Ω), ∥∇u−∇uℓ

h∥L2(Ω), ∥u− uℓ
h∥L2(Γ) and ∥∇Γu−∇Γu

ℓ
h∥L2(Γ).493

The convergence orders of these errors, interpreted in terms of the mesh size, are494

reported in Table 1 and in Table 2. For readers convenience, these four errors are495

plotted with respect to the mesh size h in Figure 4 with volume norms and in Figure 5496

with surface norms.497

∥u− uℓ
h∥L2(Ω) ∥∇u−∇uℓ

h∥L2(Ω)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 1.98 1.99 1.97 1.97 1.00 1.50 1.49 1.49
Quadratic mesh (r=2) 2.01 3.14 3.94 3.97 1.00 2.12 3.03 3.48
Cubic mesh (r=3) 2.04 2.45 3.44 4.04 1.02 1.47 2.42 3.46

Table 1: Convergence orders, interior norms.

The convergence orders presented in Table 1 and in Figure 4, relatively to L2498

norms on Ω, deserve comments. In the affine case r = 1, the figures are in perfect499

agreement with estimates (6.1): the L2 error norm is in O(hk+1 + h2) and the L2500

norm of the gradient of the error is in O(hk + h1.5).501

For quadratic meshes, a super convergence is observed in the geometric error, the502

case r = 2 behaves as if r = 3: the L2 error norm is in O(hk+1+h4) and the L2 norm503

of the gradient of the error is in O(hk + h3.5). This is quite visible in Figure 4 (left)504

for the L2 error: while using respectively a P3 and P4 method, the L2 error graphs505

4MUMPS, MUltifrontal Massively Parallel Sparse direct Solver, https://mumps-
solver.org/index.php
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Fig. 4: Plots of the error in volume norms with respect to the mesh step h
corresponding to the convergence order in Table 1: H1

0(Ω) norm (above) and L2(Ω)
norm (below) for quadratic meshes (left) and cubic meshes (right).

in both cases follow the same line representing O(h4). In the case of the L2 gradient506

norm of the error, this super convergence is depicted with a P3 (resp. P4) method:507

the convergence order is equal to 3 (resp. 3.5) surpassing the expected value of 2.5.508

This super convergence, though not understood, has been documented and further509

investigated in [4, 8]. It has in particular to be noted that the super-convergence does510

not seem to be restricted neither to the present problem nor to the disk geometry511

considered here. Further numerical investigations showed that the geometric error512

relative to quadratic meshes and for integral computations is in O(h4) for various513

non-convex domains with no symmetry. In the next section, we will also see that it514

also holds in dimension 3.515

For the cubic case eventually, the L2 error norm is expected to be in O(hk+1/2+h4)516

and the L2 norm of the gradient of the error in O(hk−1/2 + h3.5). This is accurately517

observed for a P1 (resp. P4) method: the L2 error is equal to 2.04 (resp. 4.04) and518

the L2 gradient error is equal to 1.02 (resp. 3.46). However, a default of order -1/2 is519

observed on the convergence orders in the P2 and P3 case. This default might not be520

in relation with the finite element approximation since it is not observed when consid-521

ering L2(Γ) errors as shown in Table 2 and as discussed later on. Further experiments522

showed us that this default is not caused by the specific Ventcel boundary condition,523

it similarly occurs when considering a Poisson problem with Newman boundary con-524

dition on the disk. We also have experienced that this default of convergence is not525

related to the lift: actually it is related to the finite element interpolation error: so526

far we have no clues on its explanation.527

Let us now discuss Table 2 and Figure 5, where the surface errors and their528
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∥u− uℓ
h∥L2(Γ) ∥∇Γu−∇Γu

ℓ
h∥L2(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Affine mesh (r=1) 2.00 2.03 2.01 2.01 1.00 2.00 1.98 1.98
Quadratic mesh (r=2) 2.00 3.00 4.00 4.02 1.00 2.00 3.00 4.02
Cubic mesh (r=3) 2.00 3.00 4.00 4.21 1.00 2.00 3.00 3.98

Table 2: Convergence orders, boundary norms.

Fig. 5: Plots of the error in interior norms with respect to the mesh step h
corresponding to the convergence order in Table 2: H1

0(Γ) norm (above) and L2(Γ)
norm (below) for quadratic meshes (left) and cubic meshes (right)..

convergence rates are observed. The first interesting point is that the L2 convergence529

towards the gradient of u is faster than expressed in (6.1): O(hk + hr+1) instead530

of O(hk + hr+1/2), as expected. Indeed, this is observed on a cubic and quadratic531

mesh with a P4 method: the convergence rate is equal to 4 instead of 3.5. It seems532

that the estimate in Theorem 6.1 is not optimal for the tangential gradient norm on Γ:533

so far we have not been able to improve it. Meanwhile the L2 convergence towards u534

behaves as expected. Additionally, the super-convergence previously described for535

quadratic meshes is clearly visible for the boundary norms too. We also notice that536

the default of convergence of magnitude -1/2 for cubic meshes is absent here.537

Lift transformation regularity. In Remark 4.5, we discussed the dependency of538

the regularity of the lift transformation G
(r)
h : Ω

(r)
h → Ω defined in (4.1) with respect539

to the exponent s in the term (λ⋆)s. According to the theory, the exponent s in (λ⋆)s540

needs to be set to r + 2 to ensure that G
(r)
h is piece-wise Cr+1 on each element. In541

theory, it is thus necessary to set s = r + 2 for the estimates in Theorem 6.1 to hold.542
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Surprisingly, we have remarked that in practice, estimates in Theorem 6.1 still hold543

when decreasing the exponent of s of (λ⋆)s. When setting s = 2, the results in Table 1544

and in Table 2 remain unchanged. When setting s = 1, the same conclusion holds,545

though in this case DG
(r)
h has singularities on the non-internal elements. This is quite546

surprising since the estimate in (4.2), which is crucial for the error analysis, no longer547

holds. Beyond the convergence rate, we have also noticed that the accuracy itself is548

not damaged when decreasing the exponent s of (λ⋆)s. A plausible reason for this is549

that the singular points of the derivatives of G
(r)
h are always located at one element550

vertex or edge. They are “not seen”, likely because they are away from the quadrature551

method nodes (used to approximate the integrals) that are located in the interior of552

considered element. Consequently, the singularities are not detected by this method.553

∥u− ueℓ
h ∥L2(Ω) ∥∇u−∇ueℓ

h ∥L2(Ω)

P1 P2 P3 P4 P1 P2 P3 P4

Quadratic mesh (r=2) 2.01 2.51 2.49 2.49 1.00 1.52 1.49 1.49
Cubic mesh (r=3) 2.04 2.50 2.48 2.49 1.03 1.51 1.49 1.49

∥u− ueℓ
h ∥L2(Γ) ∥∇Γu−∇Γu

eℓ
h ∥L2(Γ)

P1 P2 P3 P4 P1 P2 P3 P4

Quadratic mesh (r=2) 2.00 3.00 2.99 2.99 1.00 2.00 3.00 2.98
Cubic mesh (r=3) 2.00 3.00 2.99 2.98 1.00 2.00 3.00 2.98

Table 3: Convergence orders for the lift in [18].

Former lift definition. As developed in remark 4.6, another lift transformation554

Gh : Ω
(r)
h → Ω had formerly been introduced in [18], with different properties on the555

boundary. We reported the convergence orders observed with this lift in Table 3.556

The first observation is that ∥u − ueℓ
h ∥L2(Ω) is at most in O(h2.5) whereas ∥∇u −557

∇ueℓ
h ∥L2(Ω) is at most in O(h1.5), resulting in a clear decrease of the convergence rate558

as compared to tables 1 and 2. Similarly, ∥u−ueℓ
h ∥L2(Γ) and ∥∇u−∇ueℓ

h ∥L2(Γ) are at559

most in O(h3) whereas they could reach O(h4) in tables 1 and 2.560

Notice that the lift transformation intervenes at two different stages: for the right561

hand side definition in (5.2) and for the error computation itself. We experienced the562

following. We set the lift for the right hand side computation to the one in [18] whereas563

the lift for the error computation is the one in definition 4.2 (so that the numerical564

solution uh is the same as in Table 3, only its post treatment in terms of errors is565

different). Then we observed that the results are partially improved: for the P4 case566

on cubic meshes, ∥u − ueℓ
h ∥L2(Ω) = O(h3.0) and ∥∇u − ∇ueℓ

h ∥L2(Ω) = O(h2.5), which567

remain lower than the convergence orders in Table 1.568

Still considering the lift definition in [18], we also experienced that the exponent s569

in the term (λ⋆)s in the lift definition (see remark 4.5) has an influence on the conver-570

gence rates. Surprisingly, the best convergence rates are obtained when setting s = 1:571

this case corresponds to the minimal regularity on the lift transformation Gh, the dif-572

ferential of which (as previously discussed) has singularities on the non-internal mesh573

elements. In that case however, the convergence rares goes up to O(h3.5) and O(h2.5)574

on quadratic and cubic meshes for ∥u− ueℓ
h ∥L2(Ω) and ∥∇u−∇ueℓ

h ∥L2(Ω) respectively.575

Meanwhile, it has been noticed that setting s = 1 somehow damages the quality of576

the numerical solution on the domain boundary: these last results are surprising and577
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with no clear explanation. Eventually, when setting s ≥ 2, the convergence rates are578

lower and identical to those in Table 3.579

7.2. A 3D case: error estimates on the unit ball. The system (1.1) is580

considered on the unit ball Ω = B(O, 1) ⊂ R3, with source terms f = −(x + y)ez on581

the domain and g = (x + y)ez(5z + z2 + 3) on the boundary. The ball is discretized582

using meshes of order r = 1, . . . , 3, which are depicted in Figure 6 for affine and583

quadratic meshes.584

Fig. 6: Numerical solution of the Ventcel problem on affine and quadratic meshes.

For each mesh order r and finite element degree k, we compute the error on a series585

of six successively refined meshes. Each mesh counts 10× 2n−1 edges on the equator586

circle, for n = 1, . . . , 6. The most refined mesh has approximately 2, 4× 106 tetrahe-587

dra and the associated P3 finite element method counts 11× 106 degrees of freedom.588

Consequently the matricial system of the spectral problem, which needs to be solved,589

has a size 11×106 with a rather large stencil. As a result, in the 3D case, the compu-590

tations are much more demanding. The use of MUMPS, as we did in the 2D case, is591

no longer an option due to memory limitation. The inversion of the linear system is592

done using the conjugate gradient method with a Jacobi pre-conditioner. To handle593

these computations, we resorted to the UPPA research computer cluster PYRENE5.594

Using shared memory parallelism on a single CPU with 32 cores and 2 000 Mb of595

memory, the total time required is around 2 hours.596

The following numerical errors are computed on a series of refined meshes, using597

the lift defined in section 4.1:598

∥u− uℓ
h∥L2(Ω), ∥∇u−∇uℓ

h∥L2(Ω), ∥u− uℓ
h∥L2(Γ) and ∥∇Γu−∇Γu

ℓ
h∥L2(Γ).599

In figure 7, is displayed a log–log graph of each of the surface errors in H1
0 and L2600

norms on quadratic and cubic meshes using P2 and P3 finite element methods. As601

a general comment: it can be seen that the quadratic meshes also exhibit a super-602

convergence as in dimension 2 and always behave as if r = 3 instead of the ex-603

pected r = 2.604

As observed in the case of the disk, the L2 surface errors behave quite well following605

the inequalities in (6.1). The H1 surface errors follow the same pattern as in the606

previous case: the error is in O(hk + hr+1) instead of O(hk + hr+1/2).607

In Figure 8, the H1
0 error in the volume is computed on quadratic meshes (left)608

and cubic meshes (right) with a P2 and P3 methods. In the quadratic case, the error609

has a convergence order of 2 (resp. 3) for a P2 (resp. P3) method, following the610

5PYRENE Mesocentre de Calcul Intensif Aquitain, https://git.univ-pau.fr/num-as/pyrene-
cluster
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Fig. 7: 3D case: plots of the error in H1
0(Γ) norm (above) and L2(Γ) norm (below)

and for quadratic meshes (left) and cubic meshes (right).

Fig. 8: 3D case: plots of the error in H1
0(Ω) norm for quadratic meshes (left) and

cubic meshes (right).

inequality (6.1). In the cubic case, the same phenomena is observed as in the case of611

the disk: a loss of −1/2 in the convergence rate is detected, and the error is in O(h1.5)612

(resp. O(h2.5)) for a P2 (resp. P3) method.613

In Figure 9, the L2 error in the volume is computed on quadratic meshes (left)614

and cubic meshes (right) with a P2 and P3 methods. In the quadratic case, the error615

has a convergence order of 3 (resp. 4) for a P2 (resp. P3) method. This indicates616

that the super convergence phenomena is still observed on 3D domains. In the cubic617

case, the same default of −1/2 in the convergence rate is observed as in the case of618

the disk: the graph of the error seems to have a slope of 2.5 (resp. 3.5) instead of 3619

(resp. 4) for a P2 (resp. P3) method.620
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Fig. 9: 3D case: plots of the error in L2(Ω) norm for quadratic meshes (left) and
cubic meshes (right).

Appendix A. Proof of Proposition 4.4.621

Following the notations given in definition 3.2, we present the proof of Proposition622

4.4 which requires a series of preliminary results given in Propositions A.1, A.3 and623

A.4. The proofs of these propositions are inspired by the proofs of [1, Lemma 6.2],624

[18, Lemma 4.3] and [18, proposition 4.4] respectively.625

Proposition A.1. The map y : x̂ ∈ T̂\σ̂ 7→ y := F
(r)
T (ŷ) ∈ Γ

(r)
h is a smooth626

function and for all m ≥ 1, there exists a constant c > 0 independent of h such that,627

(A.1) ∥Dmy∥L∞(T̂\σ̂) ≤
ch

(λ∗)m
.628

Remark A.2. The proof of this proposition and of the next one rely on the formula629

of Faà di Bruno (see [1, equation 2.9]). This formula states that for two functions f630

and g, which are of class Cm, such that f ◦ g is well defined, then,631

(A.2) Dm(f ◦ g) =
m∑

p=1

(
Dp(f)

∑
i∈E(m,p)

ci

m∏
q=1

Dqgiq
)
,632

where E(m, p) := {i ∈ Nm;
∑m

q=1 iq = p and
∑m

q=1 qiq = m} and ci are positives633

constants, for all i ∈ E(m, p).634

Proof of Proposition A.1. We detail the proof in the 2 dimensional case, the 3D635

case can be proved in a similar way.636

Consider, the reference triangle T̂ with the usual orientation. Its vertices are637

denoted (v̂i)
3
i=1 and the associated barycentric coordinates respectively are: λ1 =638

1 − x1 − x2, λ2 = x2 and λ3 = x1. Consider a non-internal mesh element T (r) such639

that, without loss of generality, v1 /∈ Γ. In such a case, depicted in figure 10, ε1 = 0640

and ε2 = ε3 = 1, since v2, v3 ∈ Γ ∩ T (r). This implies that λ∗ = λ2 + λ3 = x2 + x1641

and,642

(A.3) ŷ =
1

λ∗ (λ2v̂2 + λ3v̂3) =
1

x2 + x1
(x2v̂2 + x1v̂3).643

In this case, σ̂ = {v̂1} and ŷ is defined on T̂ \ {v̂1}.644

By differentiating the expression (A.3) of ŷ and using an induction argument, it645

can be proven that there exists a constant c > 0, independent of h, such that,646

(A.4) ∥Dmŷ∥L∞(T̂\σ̂) ≤
c

(λ∗)m
, for all m ≥ 1.647
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T̂

• •

•

v̂1 v̂2

v̂3

•

••
F

(r)
T

•
• ŷx̂

T (r)

•

•

•v2

v3

v1
•

• •

Γ

•
•

y
x

ê

e(r) = F
(r)
T (ê)

Fig. 10: Displaying F
(r)
T : T̂ → T (r) in a 2D quadratic case (r=2).

Since F
(r)
T is the Pr-Lagrangian interpolant of F

(e)
T on T̂ , then y = F

(r)
T ◦ ŷ is648

a smooth function on T̂\σ̂. We now apply the inequality (A.2) for y = F
(r)
T ◦ ŷ to649

estimate its derivative’s norm as follows, for all m ≥ 1,650

∥Dm(y)∥L∞(T̂\σ̂) ≤
m∑

p=1

(
∥Dp(F

(r)
T )∥L∞(ê)

∑
i∈E(m,p)

ci

m∏
q=1

∥Dq ŷ∥iq
L∞(T̂\σ̂)

)
,651

where ê := (F
(r)
T )(−1)(e(r)) and e(r) := ∂T (r) ∩ Γ

(r)
h are displayed in Figure 10. After-652

wards, we decompose the sum into two parts, one part taking p = 1 and the second653

one for p ≥ 2, and apply inequality (A.4),654

∥Dm(y)∥L∞(T̂\σ̂)655

≤ ∥D(F
(r)
T )∥L∞(ê)

∑
i∈E(m,1)

m∏
q=1

(
c

(λ∗)q
)iq+

m∑
p=2

(
∥Dp(F

(r)
T )∥L∞(ê)

∑
i∈E(m,p)

m∏
q=1

(
c

(λ∗)q
)iq

)
≤ chλ∗(−

∑m
q=1 qiq) + c

m∑
p=2

hrλ∗(−
∑m

q=1 qiq) ≤ ch(λ∗)−m,

656

using that ∥D(F
(r)
T )∥L∞(ê) ≤ ch and ∥Dp(F

(r)
T )∥L∞(ê) ≤ chr, for 2 ≤ p ≤ r + 1 (see657

[10, page 239]), where the constant c > 0 is independent of h. This concludes the658

proof.659

Proposition A.3. Assume that Γ is Cr+2 regular. Then the mapping b ◦ y : x̂ ∈660

T̂\σ̂ 7→ b(y(x̂)) ∈ Γ is of class Cr+1. Additionally, for any 1 ≤ m ≤ r+1, there exists661

a constant c > 0 independent of h such that,662

(A.5) ∥Dm(b(y)− y)∥L∞(T̂\σ̂) ≤
chr+1

(λ∗)m
.663

Proof. Since Γ is Cr+2 regular, the orthogonal projection b is a Cr+1 function on664

a tubular neighborhood of Γ (see [16, Lemma 4.1] or [3]). Consequently, following665

Proposition A.1, b(y)− y is of class Cr+1 on T̂\σ̂.666

Secondly, consider 1 ≤ m ≤ r + 1. Applying the Faà di Bruno formula (A.2) for667
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the function b(y)− y = (b− id) ◦ y, we have,668

(A.6)

∥Dm(b(y)− y)∥L∞(T̂\σ̂) ≤
m∑

p=1

(
∥Dp(b− id)∥L∞(e(r))

∑
i∈E(m,p)

ci

m∏
q=1

∥Dqy∥iq
L∞(T̂\σ̂)

)
,669

where e(r) = ∂T (r) ∩ Γ
(r)
h is displayed in Figure 10. Notice that b(v) = v for any

Pr-Lagrangian interpolation nodes v ∈ Γ ∩ e(r). Then id|
e(r)

is the Pr-Lagrangian
interpolant of b|

e(r)
. Consequently, the interpolation inequality can be applied as

follows (see [19, 1]),

∀z ∈ e(r), ∥Dp(b(z)− z)∥ ≤ chr+1−p, for any 0 ≤ p ≤ r + 1.

This interpolation result combined with (A.1) is replaced in (A.6) to obtain,670

∥Dm
x̂ (b(y)− y)∥L∞(T̂\σ̂) ≤ c

m∑
p=1

(
hr+1−p

∑
i∈E(m,p)

m∏
q=1

(
h

(λ∗)q
)iq

)
671

≤ c

m∑
p=1

(
hr+1−p h

∑m
q=1 iq

(λ∗)
∑m

q=1 qiq

)
≤ c

m∑
p=1

(
hr+1−p hp

(λ∗)m

)
≤ c

hr+1

(λ∗)m
,672

where the constant c > 0 is independent of h. This concludes the proof.673

Now, we introduce the mapping ρT (r) , such that F
(e)

T (r) = F
(r)
T + ρT (r) transforms674

T̂ into the exact triangle T (e).675

Proposition A.4. Let ρT (r) : x̂ ∈ T̂ 7→ ρT (r)(x̂) ∈ Rd, be given by,

ρT (r)(x̂) :=

{
0 if x̂ ∈ σ̂,

(λ∗)r+2(b(y)− y) if x̂ ∈ T̂\σ̂.

The mapping ρT (r) is of class Cr+1 on T̂ and there exist a constant c > 0 independent676

of h such that,677

(A.7) ∥DmρT (r)∥L∞(T̂ ) ≤ chr+1, for 0 ≤ m ≤ r + 1.678

Proof. The mapping ρT (r) is of class Cr+1(T̂\σ̂), being the product of equally679

regular functions. Consider 0 ≤ m ≤ r + 1. Applying the Leibniz formula, we have,680

DmρT (r) |T̂\σ̂
= Dm((λ∗)r+2(b(y)− y))681

=

m∑
i=0

(m
i

)
(r + 2)....(r + 3− i)(λ∗)r+2−iDm−i(b(y)− y).682

Then applying (A.5), we get, for x̂ ∈ T̂\σ̂,

∥DmρT (r)(x̂)∥ ≤ c

m∑
i=0

(λ∗)r+2−i chr+1

(λ∗)m−i
≤ chr+1(λ∗)r+2−m.

Since r + 2−m > 0, (λ∗)r+2−m −→
x̂→σ̂

0. Consequently, DmρT (r) can be continuously683

extended by 0 on σ̂ when 0 ≤ m ≤ r+1. Thus ρT (r) ∈ Cr+1 and the latter inequality684

ensures (A.7).685
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We can now prove Proposition 4.4, as mentioned before, its proof relies on the686

previous propositions.687

Proof of Proposition 4.4. Let T (r) ∈ T (r)
h be a non-internal curved element. Let

x = F
(r)
T (x̂) ∈ T (r) where x̂ ∈ T̂ . Following the equation (4.1), we recall that,

F
(e)

T (r)(x̂) = x+ ρT (r) (x̂). Then G
(r)
h can be written as follows,

G
(r)
h |

T (r)
= F

(e)

T (r) ◦ (F
(r)
T )−1 = (F

(r)
T + ρT (r)) ◦ (F (r)

T )−1 = id|
T (r)

+ ρT (r) ◦ (F (r)
T )−1.

Firstly, with Proposition A.4, ρT (r) is of class Cr+1(T̂ ) and F
(r)
T is a polynomial,688

then G
(r)
h is also Cr+1(T (r)).689

Secondly, F
(r)
T is a C1-diffeomorphism and there exists a constant c > 0 indepen-690

dent of h such that (see [10, page 239]),691

(A.8) ∥D(F
(r)
T )−1∥ ≤ c

h
.692

Additionally, by applying (A.7) and (A.8), the following inequality holds,693

(A.9) ∥D(ρT (r))∥L∞(T̂ )∥D((F
(r)
T )−1)∥L∞(T (r)) ≤ chr+1 c

h
= chr < 1.694

Then by applying [10, Theorem 3], F
(r)
T +ρT (r) is a C1-diffeomorphism, being the sum695

of a C1-diffeomorphism and a C1 mapping, which satisfy (A.9). Therefore, G
(r)
h =696

(F
(r)
T + ρT (r)) ◦ (F (r)

T )−1 is a C1-diffeomorphism.697

To obtain the first inequality of (4.2), we differentiate the latter expression,

DG
(r)
h |

T (r)
− Id|

T (r)
= D(ρT (r) ◦ (F (r)

T )−1) = D(ρT (r)) ◦ ((F (r)
T )−1)D(F

(r)
T )−1.

Using (A.7) and (A.8), we obtain,

∥DG
(r)
h |

T (r)
− Id|

T (r)
∥L∞(T (r)) ≤ ∥D(ρT (r))∥L∞(T̂ )∥D((F

(r)
T )−1)∥L∞(T (r)) ≤ chr,

where the constant c > 0 is independent of h. Lastly, the second inequality of (4.2)698

comes as a consequence of the first one, by definition of a Jacobian.699
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