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A PRIORI ERROR ESTIMATES OF A POISSON EQUATION WITH
VENTCEL BOUNDARY CONDITIONS ON CURVED MESHES

FABIEN CAUBET*, JOYCE GHANTOUS*, AND CHARLES PIERRE*

Abstract. In this work is considered an elliptic problem, referred to as the Ventcel problem,
involving a second order term on the domain boundary (the Laplace-Beltrami operator). A varia-
tional formulation of the Ventcel problem is studied, leading to a finite element discretization. The
focus is on the construction of high order curved meshes for the discretization of the physical do-
main and on the definition of the lift operator, which is aimed to transform a function defined on
the mesh domain into a function defined on the physical one. This lift is defined in a way as to
satisfy adapted properties on the boundary, relatively to the trace operator. The Ventcel problem
approximation is investigated both in terms of geometrical error and of finite element approximation
error. Error estimates are obtained both in terms of the mesh order » > 1 and to the finite element
degree k > 1, whereas such estimates usually have been considered in the isoparametric case so far,
involving a single parameter £ = r. The numerical experiments we led, both in dimension 2 and 3,
allow us to validate the results obtained and proved on the a priori error estimates depending on
the two parameters k and r. A numerical comparison is made between the errors using the former
lift definition and the lift defined in this work establishing an improvement in the convergence rate
of the error in the latter case.

Key words. Laplace-Beltrami operator, Ventcel boundary condition, finite element method,
high order meshes, geometric error, a priori error estimates.

MSC codes. 74505, 65N15, 65N30, 65G99.

1. Introduction.

Motivations. In various situations, we have to numerically solve a Partial Differ-
ential Equation (PDE), typically with a finite element method, on smooth geometry.
A key point is to obtain an estimation of the error produced while approximating the
solution u of the problem, by its finite element approximation u; while taking into
account the error produced while approximating the physical domain €2 by the mesh
domain §2y,.

This typically is the case in this work, which is aimed at certain industrial ap-
plications (in particular in the context of the project RODAM?) where the object or
material under consideration is surrounded by a thin layer with different properties,
typically a corrosion layer. Another application is also observed in aeroacoustic, where
the so-called Ingard-Myers boundary conditions are used to model the presence of a
liner located on the surface of a duct (see [26]). The presence of this layer causes
some difficulties while discretizing the domain and numerically solving the problem.
To overcome this problem, a classical approach consists in replacing the thin layer by
a model with artificial boundary conditions. When considering diffusivity properties,
this leads to introduce second-order boundary conditions, the so-called Ventcel bound-
ary conditions, as analysed in [5]. In the second half of the 1950’s, these conditions
were introduced in the pioneering works of Ventcel [30, 31]. The price to pay is to
impose the smoothness of the domain in order to guaranty the well posedness of the
second order boundary condition, which implies that the physical domain cannot be
fitted by a polygonal mesh.

To sum up, the main focus of this paper is to consider the numerical resolution
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2 F. CAUBET, J. GHANTOUS AND C. PIERRE

of a (scalar) PDE equipped with higher order boundary conditions, which are the
Ventcel boundary conditions, to after that assess the a priori error produced by a
finite element approximation, on higher order meshes.

The Ventcel problem and its approzimation. Let {2 be a nonempty bounded con-
nected domain in R?, d = 2, 3, with a smooth boundary I' := 99Q. Considering the
source terms f and g, as well as some given constants K > 0, a;, 8 > 0, the Ventcel
problem that we will focus on is the following:

{ —Au+rku = f in§,

(1.1) —BAru+0dpu+au = g onl,

where n denotes the external unit normal to I', d,u the normal derivative of u along I'
and Ar the Laplace-Beltrami operator.

The main objective of this work is to do an error analysis of the Ventcel Problem.
To begin with, we need to point out that the domain € is required to be smooth
due to the presence of second order boundary conditions. Actually, Ventcel boundary
conditions would not make sense on polygonal domains. Thus, the physical domain 2
being non-polygonal can not be exactly fitted by the mesh domain, i.e. 5 # Q. This
gap between (2 and the mesh domain produces a geometric error. When using classical
meshes made of triangles (affine meshes), this geometric error induces a saturation
of the error at low order, independently of the considered finite element order. To
overcome this issue, we will resort to curved meshes, following the work of many
authors (see, e.g., [9, 10, 17, 18]). Meshes of order r (i.e. with elements of polynomial
degree r) will be considered to improve the asymptotic behavior of the geometric
error with respect to the mesh size h. Notice that the domain of the mesh of order r,
denoted Qg), does not fit the domain 2. However, the numerical results are expected
to be more accurate for r > 2 than for standard affine meshes.

A PF_Lagrangian finite element method is used with a degree k > 1 to approximate
the exact solution u of System (1.1) by a finite element function wy defined on the
mesh domain Qg). One goal of the present paper is to perform an error analysis
both considering the roles of the finite element approximation error, controlled by
the parameter k, and the geometric error, controlled by the parameter r. We thus
consider a non-isoparametric approach, in the sequel of the work of Demlow et al. for
surface problems as precised later on. Doing so, one can assess which is the optimal
degree of the finite element method k to chose depending on the geometrical degree r,
in order to minimize the total error. Notice that an isoparametric approach, that is
taking k = r, is treated in [17, 18, 24], for similar problems.

Since Q;LT) # 2, in order to compare the numerical solution u;, defined on Q;LT) to
the exact solution u defined on 2 and to obtain a priori error estimations, the notion
of lifting a function from a domain onto another domain needs to be introduced. The
lift functional was firstly introduced in the 1970s by many authors (see, e.g., [14, 25,
27, 29]). Among them, let us emphasize the lift based on the orthogonal projection
onto the boundary I', introduced by Dubois in [14] and further improved in terms
of regularity by Elliott et al. in [18]. However, the lift defined in [18] does not fit
the orthogonal projection on the computational domain’s boundary. As will be seen
in Section 4.1, this condition is essential to guarantee the theoretical analysis of this
problem. In order to address this issue, an alternative definition is introduced in this
paper which will be used to perform a numerical study of the computational error of
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A PRIORI ERROR ESTIMATES FOR VENTCEL CONDITIONS 3

System (1.1). This modification in the lift definition has a big impact on the error
approximation as is observed in the numerical examples in Section 7.

Main novelties. The first innovating point presented in this work, is the definition
of a new adequate lift satisfying a suitable trace property, as developed in Proposi-
tion 4.3. The second novelty in this paper is the a priori error estimations, which are
computed and expressed both in terms of finite element approximation error and of
geometrical error, respectively, associated to the finite element degree k£ > 1 and to
the mesh order r > 1. This follows the works of Demlow [4, 12, 13] on surface prob-
lems, where he considered a non isoparametric approach with k # r, in order to do
an error analysis. In the existing works such as [17], error estimates of Problem (1.1)
were established using the lift defined in [18], while considering an isoparametric ap-
proach and taking k = r. In [18], while also taking an isoparametric approach, a
thorough error analysis is made on a coupled bulk—surface partial differential equa-
tion with Ventcel boundary conditions. In [23], the well-posedness and regularity
of System (1.1) is rigorously studied. Eventually, this paper also brings to the fore
an interesting super convergence property of quadratic meshes, numerically observed
both in dimension 2 and 3.

We present the following a priori error estimations, which will be explained in
details and proved in Section 6:

Ju — up L2y = ORF + ™) and  |lu —uf |l o,r) = O(hF + B7T1/2),

where h is the mesh size and u} denotes the lift of u; (given in Definition 4.2),
and L2(Q,T) and H'(Q,T) are Hilbert spaces defined below.

Paper organization. Section 2 contains all the mathematical tools and useful def-
initions to derive the weak formulation of System (1.1). Section 3 is devoted to the
definition of the high order meshes. In Section 4, are defined the volume and surface
lifts, which are the keystones of this work. A Lagrangian finite element space and
discrete formulation of System (1.1) are presented in Section 5, alongside their lifted
forms onto €. The a priori error analysis is detailed in Section 6. The paper wraps up
in Section 7 with 2D and 3D numerical experiments studying the method convergence
rate dependency on the geometrical order r and on the finite element degree k.

2. Notations and needed mathematical tools. Firstly, let us introduce the
notations that we adopt in this paper. Throughout this paper, 2 is a nonempty
bounded connected open subset of R? (d = 2,3) with a smooth (at least C2) bound-
ary I' :== 9. The unit normal to I" pointing outwards is denoted by n and 9, is a nor-
mal derivative of a function u. We denote respectively by L%(2) and L?(T") the usual
Lebesgue spaces endowed with their standard norms on €2 and I'. Moreover, for & > 1,
H**1(Q) denotes the usual Sobolev space endowed with its standard norm. We also
consider the Sobolev spaces H**1(T") on the boundary as defined e.g. in [23, §2.3]. It
is recalled that the norm on H!(T') is: ”“”%{1(1“) = ”u”i%r) + ||Vpu\\i2(r), where Vr is
the tangential gradient defined below; and that ||“||12{k+1(r) = ||uH§Ik(F) + ||Vru|\12{k(r).
Throughout this work, we rely on the following Hilbert space (see [23])

H'(Q,1) = {u e H'(Q), u. € H(I)},

equipped with the norm ||u||f{1(Q r) = Hu||§l1(ﬂ) + ||u||12{1(r). In a similar way is de-
fined the following space L?(Q,T) := {u € L2(Q), u. € L*(T")}, equipped with the
norm ||u||i2(Q ) = ||uH%2(Q) + ||u||iz(r). More generally, we define H*+1(Q,T) :=

{u € H*1(Q), u), € H*+()}.
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4 F. CAUBET, J. GHANTOUS AND C. PIERRE

Secondly, we recall the definition of the tangential operators (see, e.g., [22]).

DEFINITION 2.1. Let w € HYT), W € HYT,R%) and u € H3(I'). Then the
following operators are defined on I':

e the tangential gradient of w given by Vrw := Vo — (V@ - n)n, where w €
HY(R?) is any extension of w;

e the tangential divergence of W given by divpW := diviV — (DWn) - n,
where W € HY (R4, RY) is any extension of W and DW = (VW;)L, is the
differential matriz of the extension W ;

e the Laplace-Beltrami operator of u given by Aru := divp(Vru).

Additionally, the constructions of the mesh used in Section 3 and of the lift
procedure presented in Section 4 are based on the following fundamental result that
may be found in [11] and [20, §14.6]. For more details on the geometrical properties
of the tubular neighborhood and the orthogonal projection defined below, we refer
to [12, 13, 16].

PROPOSITION 2.2. Let Q be a nonempty bounded connected open subset of R¢
with a C? boundary T = 0. Let d : R? — R be the signed distance function with
respect to I' defined by,

—dist(z,T") ifz €,
d(z):=4¢ 0 ifrel, with dist(z,T) :=inf{|z —y|, yeT}.
dist(z,T')  otherwise,

Then there exists a tubular neighborhood Ur := {x € R4 |d(x)| < dr} of T, of suffi-
ciently small width dr, where d is a C? function. Its gradient Vd is an extension of
the external unit normaln to I'. Additionally, in this neighborhood Ur, the orthogonal
projection b onto I is uniquely defined and given by,

b: xelrr—bx):=z—d(x)Vd(z) eT.
Finally, the variational formulation of Problem (1.1) is obtained, using the inte-
gration by parts formula on the surface I' (see, e.g. [22]), and is given by,
(2.1) find u € H(Q,T) such that a(u,v) = I(v), V v € H(Q,T),
where the bilinear form a, defined on H*(€,T)2, is given by,

a(u,v) ::/Vu-Vde—f—n/uvdm+5/vpu~vpvdo+a/uvdo,
Q Q r r

and the linear form I, defined on H*(£,T), is given by,

I(v) ::/vadx—i—/rgvda.

The following theorem claims the well-posedness of the problem (2.1) proven in [8,
th. 2] and [23, th. 3.3] and establishes the solution regularity proven in [23, th. 3.4].

THEOREM 2.3. Let Q and T' = 09 be as stated previously. Let o, 5> 0, k > 0,
and f € L2(Q), g € L2(I"). Then there exists a unique solution u € H*(Q,T) to
problem (2.1).

Moreover, if T is of class CkTY, and f € H*=1(Q), g € H*~1(T), then the solu-
tion u of (2.1) is in H**1(Q,T) and is the strong solution of the Ventcel problem (1.1).
Additionally, there exists ¢ > 0 such that the following inequality holds,

HUHHHI(Q,F) < C(Hf”Hk*l(Q) + HQHHFI(F))-
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A PRIORI ERROR ESTIMATES FOR VENTCEL CONDITIONS 5

3. Curved mesh definition. In this section we briefly recall the construction
of curved meshes of geometrical order » > 1 of the domain 2 and introduce some
notations. We refer to [8, Section 2] for details and examples (see also [18, 29, 14, 1]).
Recall for » > 1, the set of polynomials in R? of order r or less is denoted by P".
From now on, the domain £, is assumed to be at least C"*2 regular, and T’ denotes
the reference simplex of dimension d. In a nutshell, the way to proceed is the following.

1. Construct an affine mesh ’7751) of Q composed of simplices T and define the
affine transformation Fp: T — T := FT(T) associated to each simplice T

2. For each simplex T € 7;1(1), a mapping F}e) c T — T = F;e) (T) is designed
and the resulting ezact elements T'©) will form a curved exact mesh 7;1(6) of Q.

3. ForeachT € ’771(1), the mapping Fq(f) is the P interpolant of F}e). The curved

mesh 7;@ of order 7 is composed of the elements 7" := F}r) (T).

3.1. Affine mesh ’Th(l). Let 7;51) be a polyhedral mesh of €2 made of simplices
of dimension d (triangles or tetrahedra), it is chosen as quasi-uniform and henceforth
shape-regular (see [7, definition 4.4.13]). Define the mesh size h := max{diam(7T); T €

7;1(1)}, where diam(7') is the diameter of 7. The mesh domain is denoted by QS) =
UperoT. Its boundary denoted by 1";11) = 69,(11) is composed of (d — 1)-dimensional
h

simplices that form a mesh of I' = 02. The vertices of I‘;ll) are assumed to lie on T'.

For T € 72(1), we define an affine function that maps the reference element onto T,

Fr:T — T :=Fp(T)

Remark 3.1. For a sufficiently small mesh size h, the mesh boundary satisfies
FS) C Ur, where Ur is the tubular neighborhood given in proposition 2.2. This
guaranties that the orthogonal projection b : F;Ll) — I' is one to one which is required
for the construction of the exact mesh.

3.2. Exact mesh 771(6). In the 1970’s, Scott gave an explicit construction of an
exact triangulation in two dimensions in [29], generalised by Lenoir in [25] afterwards
(see also [18, §4] and [17, §3.2]). The present definition of an exact transformation F}e)
combines the definitions found in [25, 29] with the projection b as used in [14].

Let us first point out that for a sufficiently small mesh size h, a mesh element T
cannot have d 4 1 vertices on the boundary I', due to the quasi uniform assumption
imposed on the mesh 7;51). A mesh element is said to be an internal element if it has
at most one vertex on the boundary T'.

DEFINITION 3.2. Let T € 771(1) be a non-internal element (having at least 2 ver-
tice§ on the boundary). Denote v; = Fr(0;) as its vertices, where 1:11 are the vertices
of T. We define e; =1 ifv; €' and g; = 0 otherwise. To & € T is associated its
barycentric coordinates A; associated to the vertices v; of T and A*(Z) := Zfill i\
(shortly denoted by A*). Finally, we define ¢ := {& € T; \*(&) = 0} and the func-
tion § 1= > fill g\t € T, which is well defined on T\&.

Consider a non-internal mesh element T € 7;51), having at least 2 vertices on the
boundary, and the affine transformation Fr. In the two dimensional case, Frr(d) will
consist of the only vertex of T' that is not on the boundary I'. In the three dimensional
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U3

Vg »
3 3 1
U1 U2 T
Fig. 1: Visualisation of the two functions ¢ : T+ T and y: T—0T'NT in
definition 3.3 in a 2D case

case, the tetrahedral T either has 2 or 3 vertices on the boundary. In the first case,
Fr(6) is the edge of T joining its two internal vertices. In the second case, Fir(5) is
the only vertex of T.

DEFINITION 3.3. We denote 771(6) the mesh consisting of all exact elements T(¢) =
Fq(«e)(T), where F}e) = Fr for all internal elements, as for the case of mon-internal

elements F;e) is given by,

(3.1) F9: T — T©.=F 1)

PN F(e)(j) )= ifzeo,
T Tl o+ () P2(b(y) —y) ifd e T\g,

with © = Fr(%) and y = Fr(§). It has been proven in [18] that F;e) is a C*-
diffeomorphism and C™+ regular on T.

Remark 3.4. For x € T NIy, we have that A* = 1 and so y = =z inducing
that F\)(2) = b(x). Then F\” o Fr' =bon TNT},.

3.3. Curved mesh 771(T) of order r. The exact mapping F%e), defined in (3.1),
is interpolated as a polynomial of order » > 1 in the classical P"-Lagrange basis on T.
The interpolant is denoted by .\, which is a C!-diffeomorphism and is in C"+1 (7))
(see [9, chap. 4.3]). For more exhaustive details and properties of this transformation,
we refer to [18, 10, 9]. Note that, by definition, F}r) and F}e) coincide on all P"-
Lagrange nodes. The curved mesh of order r is 771(” = {T";,T ¢ 771(1)}, Q;LT) =

UT(T)eT(”')T(T) is the mesh domain and I‘g) = 895:) is its boundary.
h

4. Functional lift. We recall that » > 1 is the geometrical order of the curved
mesh. With the help of aforementioned transformations, we define lifts to transform
a function on a domain QELT) or FE:) into a function defined on € or I" respectively, in
order to compare the numerical solutions to the exact one.

We recall that the idea of lifting a function from the discrete domain onto the
continuous one was already treated and discussed in many articles dating back to the
1970’s, like [27, 29, 25, 1] and others. Surface lifts were firstly introduced in 1988
by Dziuk in [15], to the extend of our knowledge, and discussed in more details and
applications by Demlow in many of his articles (see [12, 13, 2, 4]).

4.1. Surface and volume lift definitions.
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DEFINITION 4.1 (Surface lift). Let up € LQ(FE:)), The surface lift ul € L2(T)
associated to up, is defined by,
ul ob:=uy,

where b : I‘g) — T' is the orthogonal projection, defined in Proposition 2.2. Likewise,
to u € L2(T") is associated its inverse lift u=F given by, u=t :=wuob € L2 (FE:)).

The use of the orthogonal projection b to define the surface lift is natural since b is
well defined on the tubular neighborhood Ur of T' (see Proposition 2.2) and henceforth
on FELT) C Ur for sufficiently small mesh size h.

A volume lift is defined, using the notations in definition 3.2, we introduce the
transformation Ggf) : Q;:) — Q (see figure 2) given piecewise for all T(") € 7;L(T) by,

" e (=1 () iy, J T ifzeo
(41) Gy, = Fro o (Fr7) ’FT<T>(x)'_{3:+(z\*)’”“(b(y)—y) ifief\s

with z := Fg)(ﬁ:) and y := Fg)(g)) (see figure 1 for the affine case). Notice that this

implies that GE;)I — z’d|Tm, for any internal mesh element 7 € 771(7"). Note
(r

that, by construction, G;LT) is globally continuous and piecewise differentiable on each

mesh element. For the remainder of this article, the following notations are crucial.

DG;IT) denotes the differential of GELT), (DG;LT))t is its transpose and Jj, is its Jacobin.

U3 U3
/ (2)
Us Ve Gy, Vs Ve
_—
U1 U1
V4 V2 V4 V2
T r

Fig. 2: Visualisation of Gglz) :T®? — 7 in a 2D case, for a quadratic case r = 2.

DEFINITION 4.2 (Volume lift). Let up € LQ(Qg)). We define the volume lift
associated to up, denoted ufl € L2(Q), by,

uf o G;LT) = Up.

In a similar way, to u € L2(Q) is associated its inverse lift u=" € LQ(QELT)) given
byut:=uo G;Lr).

PROPOSITION 4.3. The volume and surface lifts coincide on Fg),

Vo, € HYOQ),  (Tr up)™ = Tr(ud).

Consequently, the surface lift vi (resp. the inverse lift v=L) will now be simply denoted
by vi (resp. v7F).
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Proof. Taking z € T N Fg), T = (Fq(f))(’l)(x) satisfles A* = 1 and so § = &

and y = x. Thus F

1 (2) = b(z), in other words,

G () = FY)

) o (B @) =b(x), VYaeeTnry.

PROPOSITION 4.4. Let T(") ¢ 7;5”. Then the mapping Gg)‘ o is CTTY(T(M)
o

reqular and a C*- diffeomorphism from T onto T'®). Additionally, for a sufficiently
small mesh size h, there exists a constant ¢ > 0, independent of h, such that,

42)  VazeT®, DG (x)—1d|<ch”  and  |Ju(x)—1] < ch’,

where ngn) is defined in (4.1) and Jy, is its Jacobin.

The full proof of this proposition is partially adapted from [18] and has been detailed
in appendix A.

Remark 4.5 (Lift regularity). The lift transformation G\ : Q\") — Q in (4.1)
involves the function,

proy o & €T = (N)*(b(y) — ),
with an exponent s = r + 2 inherited from [18]: this exponent value guaranties
the C"t1 (piecewise) regularity of the function G;LT). However, decreasing that value
to s = 2 still ensures that G;LT) is a (piecewise) C! diffeomorphism and also that
Inequalities (4.2) hold: this can be seen when examining the proof of Proposition 4.4 in

Appendix A. Consequently, the convergence theorem 6.1 still holds when setting s = 2
in the definition of ppe.

Remark 4.6 (Former lift definition). The volume lift defined in (4.2) is an adap-
tation of the lift definition in [18], which however does not fulfill Proposition 4.3.
Precisely, in [18], to uj, € Hl(ler)) is associated the lifted function ug‘ € H(Q),
given by uff o Gy, = uy, where Gy, : QE:) — ) is defined piecewise, for each mesh
element T ¢ 7;5“, by Gu_,, = F}e) o (Fg))*l, where T is the affine element rela-
tive to T, F%e) is defined in (3.1) and Fq(f) is its P"-Lagrangian interpolation given
in section 3.3. However, this transformation does not coincide with the orthogonal

projection b, on the mesh boundary I‘EIT). Indeed, since F:(Fe) oF ' =bon TNTy, (see
Remark 3.4), we have,

Gn(x) =bo Fro(FY) Y z) #b(x), Yael N1,

Consequently in this case, (Tr up)% # Tr(ug’).

4.2. Lift of the variational formulation. With the lift operator, one may

express an integral over Fg) (resp. Qg)) with respect to one over I" (' resp. ), as will
be discussed in this section.

Surface integrals. In this subsection, all results stated may be found alongside
their proofs in [12, 3], but we recall some necessary informations for the sake of
completeness. For extensive details, we also refer to [13, 16, 15]. Throughout the rest
of the paper, do and do}, denote respectively the surface measures on I and on I‘g).

Let J, be the Jacobian of the orthogonal projection b, defined in Proposition 2.2,

such that do(b(z)) = Jp(z)dop(x), for all z € FEI). Notice that .J;, is bounded
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independently of h and its detailed expression may be found in [12, 13]. Consider also
the lift of J, given by Jf o b = J; (see Definition 4.1).

Let up, vy, € HY(T,) with uf, vl € HY(T) as their respected lifts. Then, one has,

d
(4.3) / uhvhdah:/uf;vﬁ—j.
ri r Iy

A similar equation may be written with tangential gradients. We start by given
the following notations. We denote the outer unit normal vector over I' by n and

the outer unit normal vector over I‘g) = 895:) by np,.. Denote P :=Id —n®n
and P, := Id —np, ®ny,. respectively as the orthogonal projections over the tangential

spaces of I' and Fgﬂ). Additionally, the Weingarten map H : RY — R¥*? is given

by H := D?d, where d is the signed distance function (see Proposition 2.2). With the
previous notations, we have,

Vi, on(x) = Po(I — dH)PVrol(b(z)), Vel

Using this equality, we may derive the following expression,

(44) /F(T) VF§:~)uh . VF;T) (3 dah = /FA%VFUﬁ . VFUfL dO’,
h

where Af; is the lift of the matrix A, given by,

(4.5) Ap(z) = Jbtx) P(I — dH)Py(I — dH)P(z), VazeT.

Volume integrals. Similarly, consider up, v, € H' () and let uf, v € HY(Q) be
their respected lifts (see Definition 4.2), we have,

1
(4.6) / uhvhdxz/uf;vflﬁdy,
o, Q h

where J;, denotes the Jacobian of G;LT) and Jﬁ is its lift given by Jf; o G;LT) = J.

Additionally, the gradient can be written as follows, for any = € Q;Lr),

Vun(z) = V(vf, 0 G))(x) = TDGY (2)(Vop) o (G (x)).

Using a change of variables z = G;LT) (z) € Q, one has, (Vup,)!(2) = TDGg)(x)Vv,‘;(z).
Finally, introducing the notation,

(4.7) G\"(z) := TDG (),

one has,

(4.8) Vuy, - Vop dz = / g}(lr)(Vqu) -Q,ST)(Vvﬁ)E.
" Q i

4.3. Useful estimations.
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Surface estimations. We recall two important estimates proved in [12]. There
exists a constant ¢ > 0 independent of h such that,

1
< ch™t,

1
(4.9) || AL — P|lpeery < ch™! and Hl -
Lee(I)

b

where A% is the lift of Aj, defined in (4.5) and Jj, is the Jacobin of the projection b.

Volume estimations. A direct consequence of the proposition 4.4 is that both
DG;LT) and Jj, are bounded on every T(") € ’7;1(T). As an extension of that, by Defi-
nition 4.2 of the lift, both Q,(LT) and J} are also bounded on T(¢). Additionally, the
inequalities (4.2) will not be directly used in the error estimations in Section 6, the
following inequalities will be used instead,

(4.10) VYzeT®, 6" (z)—-1d| <ch”  and ‘ —l‘gchr,

T(@)

where gff’ is given in (4.7). These inequalities are a consequence of the lift applied
on the inequalities (4.2).

Remark 4.7. Let us emphasize that, there exists an equivalence between the H™-
norms over 2, (resp. I'y) and the H™-norms over € (resp. I'), for m = 0,1. Let
v, € HY(Q4,Th) and let v € HY(Q,T) be its lift, then for m = 0, 1, there exist strictly
positive constants independent of A such that,

ClH’UéHHm(Q) S ||'Uh||H”"(Qh,) S CQH’UEL”Hm(Q),
C3||’Uh‘ H™(T) < ||’Uh| H™(T},) < C4||’Uh| H™(T)-

The second estimations are proved in [12]. As for the first inequalities, one may
prove them while using the equations (4.6) and (4.8). They hold due to the fact

that J;, and DGELT) (respectively J—lg and g,(f)) are bounded on T (resp. T(¢)), as a
h
consequence of the proposition 4.4 and the inequalities in (4.10).
5. Finite element approximation. In this section, is presented the finite ele-

ment approximation of problem (1.1) using P*-Lagrange finite element approximation.
We refer to [19, 9] for more details on finite element methods.

5.1. Finite element spaces and interpolant definition. Let k£ > 1, given a
curved mesh 7;L(T), the P*-Lagrangian finite element space is given by,

Vh = {X S CO(Qg)), X|r = )A(O (F’J(“T))ilv >A< € Pk(T)7 VT e 771(T)}

Let the P'-Lagrangian interpolation operator be denoted by Z(") : v € CO(QE:)) —
Z()(v) € Vj,. The lifted finite element space (see Section 4.1 for the lift definition),
is defined by,

V3, o= {vp; o € Vi),

and its lifted interpolation operator Z¢ given by,

(5.1) ¢ C'Q) — Vi
v TH) = (IO ()"
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Notice that, since {2 is an open subset of R? or R?, then we have the following Sobolev
injection H**1(Q) < C°%(Q). Thus, any function w € H**1(Q2) may be associated to
an interpolation element Z*(w) € V¥.

The lifted interpolation operator plays a part in the error estimation and the fol-
lowing interpolation inequality will display the finite element error in the estimations.

PROPOSITION 5.1. Let v € H*Y(QT) and 2 < m < k + 1. There exists a
constant ¢ > 0 independent of h such that the interpolation operator I® satisfies the
following inequality,

v — Itz ,r) + hllv — Tl o.r) < ch™|[v]lam 0,r)-

Proof. This inequality derives from given interpolation theory, see [1, Corol-
lary 4.1] and [6] for norms over Q and [12, 13] for norms over I'. One also needs
to use the following inequality, ||v_e||Hm(T(r)) < c|vllgmre)y, for 0 < m < k+1,
where the constant ¢ is independent of h. This inequality follows from a change of

variables and the fact that DmGELT) = Id 4+ D™(pprm o (F}T))—l) is locally bounded
independently of h, which is easily proved using [10, page 19] and (A.T7). 0

5.2. Finite element formulation. From now on, to simplify the notations, we
denote ), and I'j, to refer to QEJ) and I‘;lr), for any geometrical order r > 1.

Discrete formulation. Given f € L2(Q2) and g € L?(T) the right hand side of
Problem (1.1), we define (following [18, 12]) the following linear form I, on Vj}, by,

In(vn) 12/ 'Uhf_ZJhdx‘f‘/ vpg ™ Ty do,
Qp I'p

where Jp, (resp. Jp) is the Jacobin of Gg) (resp. the orthogonal projection b). With
this definition, I, (vs) = l(v}), for any vy, € V},, where [ is the right hand side in the
formulation (2.1).

The approximation problem is to find u, € Vj, such that,

(5.2) ah(uh,vh) = lh(’Uh), v Vp € Vh,

where ay, is the following bilinear form, defined on Vj x V,

an(up,vp) = Vuy, - Vo, dz + K/ upvp do
Qp Qp,

+ 8 Vphuh-VFhvhdah—i—a/ upvp doy,
T'n Tn

Remark 5.2. Since ay, is bilinear symmetric positively defined on a finite dimen-
sional space, then there exists a unique solution u;, € V}, to the discrete problem (5.2).

Lifted discrete formulation. We define the lifted bilinear form af, defined on
V4 x V¢ throughout,

ay, (uh,vp) = ap(up,vy)  for up, vy € Vy,

applying (4.8), (4.6), (4.4) and (4.3), its expression is given by,
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12 F. CAUBET, J. GHANTOUS AND C. PIERRE
A A (r) 2y o) é@ A¢ 0 ‘
ap(up,vp) = | Gy (Vug) -G, " (Voy) 7T B nVruy, - Vrvy, do
Q h T
dx do
+m/(uh)é(vh)e7 +a/(uh)é(vh)é7.
Q Jh T Jb
Keeping in mind that u is the solution of (2.1) and u} is the lift of the solution
of (5.2), for any v, € V§ C H'(,T), we notice that,

(5.3) a(u,v) = 1(vf) = In(vy) = an(up, vy) = ab (ul, vh).
Using the previous points, we can also define the lifted formulation of the discrete

problem (5.2) by: find uf, € V4 such that,

ap (up,vh) = Uvg), Vo, €V

6. Error analysis. Throughout this section, we consider that the mesh size h
is sufficiently small and that c¢ refers to a positive constant independent of the mesh
size h. From now on, the domain €, is assumed to be at least C**! regular, and
the source terms in problem (1.1) are assumed more regular: f € H*=1(Q) and g €
H*~1(T"). Then according to [23, Theorem 3.4], the exact solution u of Problem (1.1)
is in H*1(Q,T).

Our goal in this section is to prove the following theorem.

THEOREM 6.1. Letu € H*1(Q,T) be the solution of the variational problem (2.1)
and up, € Vy, be the solution of the finite element formulation (5.2). There exists a
constant ¢ > 0 such that for a sufficiently small mesh size h,

(6.1) Jlu— quHHl(QI) <c(h®*+h*Y2) and  |u— quHLa(QI) < (R 4 AT,

where uy € Vi denotes the lift of up onto Q, given in Definition 4.2.

The overall error in this theorem is composed of two components: the geometrical
error and the finite element error. To prove these error bounds, we proceed as follows:
1. estimate the geometric error: we bound the difference between the exact
bilinear form a and the lifted bilinear form afl;
2. bound the H' error using the geometric and interpolation error estimation,
proving the first inequality of (6.1);
3. an Aubin-Nitsche argument helps us prove the second inequality of (6.1).
6.1. Geometric error. First of all, we introduce B, C Q as the union of all the

non-internal elements of the exact mesh 7;1(6),
Bf; ={ T ¢ ’Eb(e); T has at least two vertices on r'}.

Note that, by definition of Bﬁ, we have,

1 r .
(6.2) —r—1=0 and 6" —1d=0 in Q\Bj.

h
The following corollary involving Bf is a direct consequence of [18, Lemma 4.10]
or [21, Theorem 1.5.1.10].

COROLLARY 6.2. Letv € HY(Q) and w € H%(Q). Then, for a sufficiently small h,
there exists ¢ > 0 such that the following inequalities hold,

63)  ollase) < h2lolme  and  Jwl s < ol
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The difference between a and ay, referred to as the geometric error, is evaluated in
the following proposition.

PROPOSITION 6.3. Consider v,w € Vfr Then for a sufficiently small h, there
ezists ¢ > 0, such that the following geometric error estimation hold,

(6.4) |a(v,w)—aj,(v,w)] < " (|Vollpa ) [ Vwllpese ) + b olla . lwlla @.r)-

The following proof is inspired by [18, Lemma 6.2]. The main difference is the use

of the modified lift given in definition 4.2 and the corresponding transformation Gg)

alongside its associated matrix g,(j), defined in (4.7), which leads to several changes

in the proof.

Proof. Let v,w € Vf;. By the definitions of the bilinear forms a and afw we have,

la(v, w) —

ab (v, w)| < a1(v,w) + kag(v, w) + Bas(v, w) + aas(v,w),

where the terms «a;, defined on VfL X me are respectively given by,

ay (v, w) =

as(v,w):=

/Vw'Vv—g}(f)vw.g}(f)vviedx’ az(v,w):= /wv (1—%)dx ;
Q Jh Q Jh
~1d) Viw- Viwdo| aa(v,w) = /wv( ~ ol
r Jb

[

The next step is to bound each a;, for i = 1,2, 3,4, while using (4.10) and (4.9).
First of all, notice that a1 (v, w) < Q1 + Q2 + @3, where,

Q1= /(Q(r) Id) Vw - Q,ST)VU—dx

Q2 := /Vw-(gr —1d)Vu Jl dz

h

9

Qg:: /Vw V’U7— )
h

We use (6.2) and (4.10) to estimate each @; as follows,

Q=

Q2 =

Q3=

T T 1
/[((],(L)—Id) Vw-g,ﬁ)wﬁdx
B} h

V- (G - 1d) Vo~ da
B: J

1
5 Vuw - Vv(ﬁ —1)dz

< ChrHVUJ”L?(B;;)HVUHL%B,{)a

< ChTHVU’HL?(B,{)||V“||L2(B,{)7
h

< ChrvaHLz(Bf;)HVUHL"’(B}‘;)'
h

Summing up the latter terms, we get, a1 (v, w) < ch”[[Vw|[ 2 ey IVl (5e)-
Similarly, to bound ag, we proceed by using (6.2) and (4.10) as follows,

az(v,w) =

< ch[lwllrzsey o)Lz sy

1
/mwv (lfj—ﬁ)dx

h
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Since v, w € V{ C HY(,T), we use (6.3) to get,
as(v,w) < ch™H|wllu @) l|v]l a1 (@)
Before estimating as, we need to notice that, by definition of the tangential gra-

dient over Iy PV = V where P =1d — n ® n is the orthogonal projection over the
tangential spaces of I'. With the estimate (4.9), we get,

as(v,w) =

/(Ag — P) Vrw - Vrvdo
r

< (|45, = Plleo oy lwllm oy vl y < ch™Hwllm oyl|olla -

Finally, using (4.9), we estimate a4 as follows,

1
wv (1 — —=)do
Jo o3

The inequality (6.4) is easy to obtain when summing up a;, for all i = 1,2,3,4.0

as(v,w) = < "M wllre @y lvlLe -

Remark 6.4. Let us point out that, with u (resp. wy) the solution of the prob-
lem (2.1) (resp. (5.2)), we have,

(6.5) [up @1y < ellullm @,

where ¢ > 0 is independent with respect to h. In fact, a relatively easy way to prove
it is by employing the geometrical error estimation (6.4), as follows,

CC””;;”%—P(Q,F) < a’(ugu Uﬁ) < a(ufwué) - a(uu uﬁ) + a‘(uvufz)v

where ¢, is the coercivity constant. Using (5.3), we have,

¢ ¢ 0 0 ¢ AN ¢
CC”uh”%—Il(Q,F) < aluy, up) — ap,(up, up) + alu, up,) = (a — ap)(up, up,) + alu, up,).

Thus applying the estimation (6.4) along with the continuity of a, we get,
[ l1Fr .m) < Chr||VuﬁHi2(Bg) + ch"™ ug 7 o,y + ellulla @, lluf e @,
< Chr””ﬁ”%{l(n,r) + cHu”Hl(Q,F)HuiHHl(Q,Fy
Thus, we have,
(1- Chr)”“ﬁ”%{l(ﬂ,r) < C||UHH1(Q,F)||Uf;||H1(Q,F)~

For a sufficiently small h, we have 1 — ch” > 0, which concludes the proof.

6.2. Proof of the H! error bound in Theorem 6.1. Let u € H**1(Q,T)
and up € Vp, be the respective solutions of (2.1) and (5.2).

To begin with, we use the coercivity of the bilinear form a to obtain, denoting c,
as the coercivity constant,

ce||Zfu — ule%{l(Q,F) < a(Thu — ub, T — uh) = a(Thu, Tu — ul) — a(ul, Tu — uf)

= ab (ub, T — ub) — a(uy, T — ub) + a(Thu, Tu — ub) — af (uf, Tu — u),
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A PRIORI ERROR ESTIMATES FOR VENTCEL CONDITIONS 15
where in the latter equation, we added and subtracted af (uf,Z%u — uf). Thus,
cel|Tfu — “ﬁ”%{l(ﬂ,r) < (afl —a) (uh, T — ub) + a(Tfu, T'u — ub) — af (uf, Thu — uf).
Applying (5.3) with v = Tu — uf, € V¥, we have,

cell T — up | oury < 1(ah, — a)(up, Tu — uf,)| + |a(Zu — u, T — uy, )|
Taking advantage of the continuity of a@ and the estimate (6.4), we obtain,

cel|Zu — usz%{l(Q’F)

IN

C(hT”VUﬁHN(B,Q) HV(IZU - Ui)Hm(Bf;) + hrHHUﬁHHl(Q,F) ||I£UJ - uf;”Hl(Q,F))
+ Ceont | Tu — ull (.0 10 — uf 1 .1
c(hT”VUfLHL%B,‘i) + W g [l o,

+ CcontHIéu - U/HHI (Q,F)) ||Ieu - quHHl(Q,F)'

IN

Then, dividing by [|Z — uf |lm1 (,r), we have,

1Zu — uj, [ o) < c (hTHVUﬁHwB,{) + W gl .y + 1T — UHHl(Q,F)) :
To conclude, we use the latter inequality in the following estimate as follows,

lu — [l .ry < llu—Zullm @) + 2% — uj[la @

<c (hrHVUfLHLz(BfL) + B g |l o.r) + (|20 — U||H1(Q,r))
Using the proposition 5.1 and the inequalities (6.3), we have,

[lu— quHHl(Q,F)
< ch"(||V (uj, — U)HL%Bf;) + ||VU||L2(Bﬁ)) + Chr+1”u£”H1(Q,F) + Chk”uHHkH(Q,F)

< eh"(Juf, — ullw o,ry) + B2l ) + b lug e o,r) + eh* ullues o).

Thus we have,
(1= ch")lJu = uj [ @) < ¢ (hTH/ZHUHH?(Q) + h¥|ullge o) + hr+1||ufl||H1(Q,F)> ~

For a sufficiently small h, we arrive at,

hr+1/2

||u — quHHl(QI) <c ( ||u||H2(Q7F) + thu||Hk+l(Q7l") —+ hr+1||uﬁ||H1(Q,F)) .

This provides the desired result using (6.5).

6.3. Proof of the L? error bound in Theorem 6.1. Recall that u € H(Q,T)
is the solution of the variational problem (2.1), uj, € V), is the solution of the discrete
problem (5.2). To estimate the L? norm of the error, we define the functional Fj, by,

F,: HY(QI) — R
v — Fh(v) = alu—ul,v).

We bound |Fj,(v)| for any v € H?(Q,T) in Lemma 6.5. Afterwards an Aubin-Nitsche
argument is applied to bound the L? norm of the error.
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16 F. CAUBET, J. GHANTOUS AND C. PIERRE

LEMMA 6.5. For allv € H2(Q),T') and for a sufficiently small h, there exists ¢ > 0
such that the following inequality holds,

(6.6) |[Fu(0)] < e(h™ + Yol ,r).-

Remark 6.6. To prove Lemma 6.5, some key points for a function v € H?(Q,T)
are presented. Firstly, inequality (6.3) implies that,

(6.7) Voe B (QT), [[Volliaqpe) < ch'/?|v]uz)-
Secondly, then the interpolation inequality in proposition 5.1 gives,
(6.8) VoeHHQ,T), ||Z% —v]ur) < chlvllu@r)-
Applying 5.3 for Tv € Vfl, we have,

(6.9) Vo e H2(Q,T), a(u,Z%) = 1(T%) = a},(ul,, T).

Proof of Lemma 6.5. Consider v € H2(2,T'). We may decompose |F},(v)| in two
terms as follows,

|y (v)| = |a(u — ufl,v)| < la(u — ufb,v —IZ’U)| + |a(u — ufb,Ilvﬂ = F +F,.

Firstly, to bound F;, we take advantage of the continuity of the bilinear form a
and apply the H! error estimation (6.1), alongside the inequality (6.8) as follows,

Fy < Ceont ||u =t |l @.mllv — Tl @,y < e(h* +h™2) hllo||mz.r)
< e(hFTL 4 pr T2 l|lv]|e2(Q,r)-
Secondly, to estimate Fy, we resort to equations (6.9) and (6.4) as follows,
Fy = |a(u, T') — a(up,, )| = |aj, (uf,, T) — a(up, I)| = |(ay, — a) (uj, T))|
< ChrHvuﬁ”LQ(Bﬁ)”V(IZU)”L%B,{) + Chr+1”ufz”Hl(Q,l")”IZ’UHHI(Q,F)~
Next, we will treat the first term in the latter inequality separately. We have,
F3 = hT”VU'fLHL%BfL)HV(IZU)HLQ(B@
< 0 (IIV (uf, = wlleagg) + IVullasg) ) (19T = ) lagsg) + 190l
< 7 (Iluf, — wllw .0y + [ Vulligg) ) (12 = vl o,ry + 190]2sy) ).

We now apply the H! error estimation (6.1), the inequality (6.7) and the interpolation
inequality (6.8), as follows,

Fy < el (BF 4 B2 4 B 2 s o, ) (R0l co,r + 5200,
<ch” h1/2 (hk—l/Z + A+ ||U||H2(Q,F)> <h1/2 + 1) hl/QHUHHZ(Q,F)

SChT+1(hk_l/2+hr+ ||u||H2(Q,F)> <h1/2+1)”vHH2(Q,I‘)~

Noticing that k—1/2 > 0 (since k > 1) and that (hk71/2+h’“+||u||Hz(Q,F)) <h1/2 + 1)

is bounded by a constant independent of h, we obtain F3 < Chr+1||U||H2(Q,F). Using
the previous expression of Fy,

F2 S ChTJrl ||'U||H2(Q7F) + ChrJrl ||U§L||H1(Q,F)||I£'U||H1(Q7F).
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A PRIORI ERROR ESTIMATES FOR VENTCEL CONDITIONS 17
Moreover, noticing that |Z%|/mo,r) < c||v]lm2@.r),

< Chr+1||v||H2(Q,I‘) + ChTH||Ufl||H1(ﬂ,F)||U||H2(SLF) < Chr+1||v||H2(Q>F)7

using (6.5). We conclude the proof by summing the estimates of F; and Fj. ]

Proof of the L? estimate (6.1). Defining e := u — ufl, the aim is to estimate the
following L2 error norm: He”i?(sz,r) = Hu—uflﬂiz(m + ||u—ufbHI2J2(F). Let v € L2(Q,T).
We define the following problem: find z, € H!(Q,T) such that,

(610) CL(U), ZU) - <w7U>L2(Q,F)7 Vwe Hl(Qa F)7

Applying Theorem 2.3 for f = v and g = v, there exists a unique solution z, €
H(,T) to (6.10), which satisfies the following inequality,

2ol 0,y < cllvllz,n)-

Taking v = e € L2(Q,T) and w = e € HY(Q,T) in (6.10), we obtain Fj,(z.) =
a(e, ze) = [[e]|f2(q,ry- In this case, Theorem 2.3 implies,

(6.11) llzellmz(o.r) < cllellLz@,r)-

Applying Inequality (6.6) for z. € H2(Q,T') and afterwards Inequality (6.11), we have,
lelf2(o,ry = [Fh(ze)| < e(B*T + 0™ Y| ze w2,y < e(h™ + R ) lellezo,r),

which concludes the proof. 0

7. Numerical experiments. In this section are presented numerical results
aimed to illustrate the theoretical convergence results in Theorem 6.1. Supplementary
numerical results will be provided in order to highlight the properties of the volume
lift introduced in definition 4.2 relatively to the lift transformation Gg) : Q;LT) - Q
given in (4.1).

All the numerical experiments presented here have been done using the finite
element library for curved meshes CUMIN [28]. Curved meshes of  of geometrical
order 1 < r < 3 have been generated using the software Gmsh?. Additionally, all
integral computations rely on quadrature rules on the reference elements which are
always chosen of sufficiently high order: the integration errors have negligible influence
over the forthcoming numerical results. All numerical results presented in this section
can be fully reproduced using dedicated source codes available on CUMIN Gitlab?.

7.1. The two dimensional case. The Ventcel problem (1.1) is considered
with o« = 8 = kK = 1 on the unit disk €2,

—Au+4u = f in Q,
—Aru+0pu+u =g onl,

with the source terms f(x,y) = —ye® and g(z,y) = ye®(3 + 42 — y?) corresponding
to the exact solution u = —f.

The numerical solutions uy, are computed for P* finite elements, with k =1, ..., 4,
on series of successively refined meshes of order r = 1,...,3, as depicted on figure 3

2Gmsh: a three-dimensional finite element mesh generator, https://gmsh.info/

3CUMIN GitLab deposit, https://plmlab.math.cnrs.fr/cpierrel /cumin
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18 F. CAUBET, J. GHANTOUS AND C. PIERRE

for coarse meshes (affine and quadratic). Each mesh counts 10 x 2"~ edges on the
domain boundary, for n = 1...7. On the most refined mesh using a P finite element
method, we counted 10 x 28 boundary edges and approximately 75500 triangles.
The associated P* finite element space has approximately 605600 DOF (Degrees Of
Freedom). We mention that the computation time is very fast in the present case:
total computations roughly last one minute on a simple laptop, which are made really
efficient with the direct solver MUMPS? for sparse linear systems.

Fig. 3: Numerical solution of the Ventcel problem on affine and quadratic meshes.

In order to validate numerically the latter estimates, for each mesh order r and
each finite element degree k, the following numerical errors are computed on a series
of refined meshes:

lu—upllz@)s  Vu—Vugllzg), e —upllzey  and  [[Veu — Veug |-

The convergence orders of these errors, interpreted in terms of the mesh size, are
reported in Table 1 and in Table 2. For readers convenience, these four errors are
plotted with respect to the mesh size h in Figure 4 with volume norms and in Figure 5
with surface norms.

lu —ujllz@) [Vu— Vuj [l
P! P? P3 P? P! P? P3 Pt
Affine mesh (r=1) 1.98 | 1.99 | 1.97 | 1.97 || 1.00 | 1.50 | 1.49 | 1.49
Quadratic mesh (r=2) || 2.01 | 3.14 | 3.94 | 3.97 || 1.00 | 2.12 | 3.03 | 3.48
Cubic mesh (r=3) 2.04 | 245 | 3.44 | 4.04 || 1.02 | 1.47 | 2.42 | 3.46

Table 1: Convergence orders, interior norms.

The convergence orders presented in Table 1 and in Figure 4, relatively to L2
norms on 2, deserve comments. In the affine case r = 1, the figures are in perfect
agreement with estimates (6.1): the L2 error norm is in O(h**! + h2) and the L2
norm of the gradient of the error is in O(h¥ + h'?).

For quadratic meshes, a super convergence is observed in the geometric error, the
case r = 2 behaves as if r = 3: the L? error norm is in O(h**! 4+ h*) and the L? norm
of the gradient of the error is in O(h¥ 4+ h3-®). This is quite visible in Figure 4 (left)
for the L2 error: while using respectively a P3 and P* method, the L? error graphs

AMUMPS, MUltifrontal Massively Parallel Sparse direct Solver, https://mumps-

solver.org/index.php
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The H1_0(Omega) error on a quadratic mesh The H1_0(Omega) error on a cubic mesh

ga) ermor

— 0oh"15)
— ofh~2.5)
il 0fh~35)

- .- P2

- P

o -a- P4

<
\

H1_0{Omeaa) error

H1_0{Ome:

10 10! 102 10
mesh step h mesh step h

The L2({Omega) error on a quadratic mesh The L2{Omega) error on a cubic mesh

— 0h~2.5)
oA — 0h*3.5)
" o~}
s .- P2
ok -+ P
el -a- P4

L2(0Omega) error
=
L2(0mega) error

107 10! 107 10
mesh step h mesh step h

Fig. 4: Plots of the error in volume norms with respect to the mesh step h
corresponding to the convergence order in Table 1: H}(£2) norm (above) and L2(£2)
norm (below) for quadratic meshes (left) and cubic meshes (right).

in both cases follow the same line representing O(h?*). In the case of the L? gradient
norm of the error, this super convergence is depicted with a P? (resp. P*) method:
the convergence order is equal to 3 (resp. 3.5) surpassing the expected value of 2.5.
This super convergence, though not understood, has been documented and further
investigated in [4, 8]. It has in particular to be noted that the super-convergence does
not seem to be restricted neither to the present problem nor to the disk geometry
considered here. Further numerical investigations showed that the geometric error
relative to quadratic meshes and for integral computations is in O(h*) for various
non-convex domains with no symmetry. In the next section, we will also see that it
also holds in dimension 3.

For the cubic case eventually, the L2 error norm is expected to be in O(h’”‘l/ 24+ht)
and the L? norm of the gradient of the error in O(h*~1/2 4 h3). This is accurately
observed for a P! (resp. P*) method: the L? error is equal to 2.04 (resp. 4.04) and
the L2 gradient error is equal to 1.02 (resp. 3.46). However, a default of order -1/2 is
observed on the convergence orders in the P2 and P? case. This default might not be
in relation with the finite element approximation since it is not observed when consid-
ering L2(T") errors as shown in Table 2 and as discussed later on. Further experiments
showed us that this default is not caused by the specific Ventcel boundary condition,
it similarly occurs when considering a Poisson problem with Newman boundary con-
dition on the disk. We also have experienced that this default of convergence is not
related to the lift: actually it is related to the finite element interpolation error: so
far we have no clues on its explanation.

Let us now discuss Table 2 and Figure 5, where the surface errors and their
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Ju — up L2 (r) [Vru — Vrug[lL2 )

P P2 P3 Pt P P2 P3 P?
Affine mesh (r:1) 2.00 | 2.03 | 2.01 | 2.01 1.00 | 2.00 | 1.98 | 1.98
Quadratic mesh (r:2) 2.00 | 3.00 | 4.00 | 4.02 || 1.00 | 2.00 | 3.00 | 4.02
Cubic mesh (r:3) 2.00 | 3.00 | 4.00 | 4.21 1.00 | 2.00 | 3.00 | 3.98

Table 2: Convergence orders, boundary norms.

The H1_0{Gamma) error on a quadratic mesh The H1_0(Gamma) error on a cubic mesh

H1_0(Gamma) eror
=

H1_0(Gamma) error
5

102 107t 102 107!
mesh step h mesh step h

The L2(Gamma) error on a quadratic mesh The L2(Gamma) error on a cubic mesh

L2({Gamma) error
L2(Gamma) error

10 10 10 10
mesh step h mesh step h

Fig. 5: Plots of the error in interior norms with respect to the mesh step h
corresponding to the convergence order in Table 2: H}(T") norm (above) and L2(T")
norm (below) for quadratic meshes (left) and cubic meshes (right)..

convergence rates are observed. The first interesting point is that the L2 convergence
towards the gradient of u is faster than expressed in (6.1): O(h¥ 4+ h"*1) instead
of O(h* + hr+1/2), as expected. Indeed, this is observed on a cubic and quadratic
mesh with a P4 method: the convergence rate is equal to 4 instead of 3.5. It seems
that the estimate in Theorem 6.1 is not optimal for the tangential gradient norm on I':
so far we have not been able to improve it. Meanwhile the L2 convergence towards u
behaves as expected. Additionally, the super-convergence previously described for
quadratic meshes is clearly visible for the boundary norms too. We also notice that
the default of convergence of magnitude -1/2 for cubic meshes is absent here.

Lift transformation regularity. In Remark 4.5, we discussed the dependency of
the regularity of the lift transformation GELT) : ler) — Q) defined in (4.1) with respect
to the exponent s in the term (A\*)®. According to the theory, the exponent s in (A*)*

needs to be set to r 4 2 to ensure that GEI) is piece-wise C™*! on each element. In
theory, it is thus necessary to set s = r + 2 for the estimates in Theorem 6.1 to hold.
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Surprisingly, we have remarked that in practice, estimates in Theorem 6.1 still hold
when decreasing the exponent of s of (A*)°. When setting s = 2, the results in Table 1
and in Table 2 remain unchanged. When setting s = 1, the same conclusion holds,
though in this case DGg) has singularities on the non-internal elements. This is quite
surprising since the estimate in (4.2), which is crucial for the error analysis, no longer
holds. Beyond the convergence rate, we have also noticed that the accuracy itself is
not damaged when decreasing the exponent s of (A*). A plausible reason for this is
that the singular points of the derivatives of Gg) are always located at one element
vertex or edge. They are “not seen”, likely because they are away from the quadrature
method nodes (used to approximate the integrals) that are located in the interior of
considered element. Consequently, the singularities are not detected by this method.

Ju —ugL2 @) [Vu = VugtLa ()
P! P? P3 P2 P! P? P3 P?
Quadratic mesh (r:2) 2.01 | 2.51 | 2.49 | 2.49 1.00 | 1.52 | 1.49 | 1.49
Cubic mesh (r:3) 2.04 | 2.50 | 2.48 | 2.49 1.03 | 1.51 | 1.49 | 1.49

lu — w2 ) [Vru — Vrus! Lz

P! P? P3 P? P! P? P3 P2
Quadratic mesh (r=2) || 2.00 | 3.00 | 2.99 | 2.99 || 1.00 | 2.00 | 3.00 | 2.98
Cubic mesh (r=3) 2.00 | 3.00 | 2.99 | 2.98 || 1.00 | 2.00 | 3.00 | 2.98

Table 3: Convergence orders for the lift in [18].

Former lift definition. As developed in remark 4.6, another lift transformation
Gy : Qg) —  had formerly been introduced in [18], with different properties on the
boundary. We reported the convergence orders observed with this lift in Table 3.
The first observation is that ||u — u§’[l2() is at most in O(h*®) whereas ||Vu —
Vug||12(q) is at most in O(h'5), resulting in a clear decrease of the convergence rate
as compared to tables 1 and 2. Similarly, [|u — u§‘|| 2(r) and [|[Vu — Vui||p2(r are at
most in O(h?) whereas they could reach O(h*) in tables 1 and 2.

Notice that the lift transformation intervenes at two different stages: for the right
hand side definition in (5.2) and for the error computation itself. We experienced the
following. We set the lift for the right hand side computation to the one in [18] whereas
the lift for the error computation is the one in definition 4.2 (so that the numerical
solution uy, is the same as in Table 3, only its post treatment in terms of errors is
different). Then we observed that the results are partially improved: for the P* case
on cubic meshes, |u — uf’||l 2q) = O(R*?) and ||[Vu — Vu§t||i2q) = O(h*5), which
remain lower than the convergence orders in Table 1.

Still considering the lift definition in [18], we also experienced that the exponent s
in the term (A*)® in the lift definition (see remark 4.5) has an influence on the conver-
gence rates. Surprisingly, the best convergence rates are obtained when setting s = 1:
this case corresponds to the minimal regularity on the lift transformation Gy, the dif-
ferential of which (as previously discussed) has singularities on the non-internal mesh
elements. In that case however, the convergence rares goes up to O(h3-%) and O(h?5)
on quadratic and cubic meshes for ||u — uf‘||2(q) and [|[Vu — Vugt||12(q) respectively.
Meanwhile, it has been noticed that setting s = 1 somehow damages the quality of
the numerical solution on the domain boundary: these last results are surprising and
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with no clear explanation. Eventually, when setting s > 2, the convergence rates are
lower and identical to those in Table 3.

7.2. A 3D case: error estimates on the unit ball. The system (1.1) is
considered on the unit ball 2 = B(O,1) C R?, with source terms f = —(z + y)e* on
the domain and g = (x + y)e*(5z + 22 + 3) on the boundary. The ball is discretized
using meshes of order » = 1,...,3, which are depicted in Figure 6 for affine and
quadratic meshes.

Fig. 6: Numerical solution of the Ventcel problem on affine and quadratic meshes.

For each mesh order r and finite element degree k, we compute the error on a series
of six successively refined meshes. Each mesh counts 10 x 2"~ ! edges on the equator
circle, for n = 1,...,6. The most refined mesh has approximately 2,4 x 10° tetrahe-
dra and the associated P finite element method counts 11 x 10° degrees of freedom.
Consequently the matricial system of the spectral problem, which needs to be solved,
has a size 11 x 10% with a rather large stencil. As a result, in the 3D case, the compu-
tations are much more demanding. The use of MUMPS, as we did in the 2D case, is
no longer an option due to memory limitation. The inversion of the linear system is
done using the conjugate gradient method with a Jacobi pre-conditioner. To handle
these computations, we resorted to the UPPA research computer cluster PYRENE?®.
Using shared memory parallelism on a single CPU with 32 cores and 2000 Mb of
memory, the total time required is around 2 hours.

The following numerical errors are computed on a series of refined meshes, using
the lift defined in section 4.1:

lu—uhllz@), V= Vgl e —upllzey and  [[Veu = Veug 2.

In figure 7, is displayed a log—log graph of each of the surface errors in H} and L2
norms on quadratic and cubic meshes using P? and P? finite element methods. As
a general comment: it can be seen that the quadratic meshes also exhibit a super-
convergence as in dimension 2 and always behave as if r = 3 instead of the ex-
pected r = 2.

As observed in the case of the disk, the L? surface errors behave quite well following
the inequalities in (6.1). The H' surface errors follow the same pattern as in the
previous case: the error is in O(h* 4 h"+1) instead of O(h* 4 h7+1/2).

In Figure 8, the H} error in the volume is computed on quadratic meshes (left)
and cubic meshes (right) with a P? and P3 methods. In the quadratic case, the error
has a convergence order of 2 (resp. 3) for a P? (resp. P3) method, following the

SPYRENE Mesocentre de Calcul Intensif Aquitain, https://git.univ-pau.fr/num-as/pyrene-
cluster
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The H1_0(Gamma) error on a quadratic mesh

The H1_0{Gamma) error on a cubic mesh
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3D case: plots of the error in H(T') norm (above) and L?(T") norm (below)
and for quadratic meshes (left) and cubic meshes (right).

Fig. 7:

The H1_0(Omega) error on a quadratic mesh The H1_0(Omega) error on a cubic mesh

H1_0{Omega) error
—
=

H1_0{Omega) error
o
=

— 0h~15)
— 0Oh"2.5)
- P2
- -e- 13

10 10!
mesh step h mesh step h

Fig. 8: 3D case: plots of the error in H}(Q2) norm for quadratic meshes (left) and
cubic meshes (right).

inequality (6.1). In the cubic case, the same phenomena is observed as in the case of
the disk: a loss of —1/2 in the convergence rate is detected, and the error is in O(h!5)
(resp. O(h?9)) for a P? (resp. P3) method.

In Figure 9, the L? error in the volume is computed on quadratic meshes (left)
and cubic meshes (right) with a P? and P? methods. In the quadratic case, the error
has a convergence order of 3 (resp. 4) for a P? (resp. P?) method. This indicates
that the super convergence phenomena is still observed on 3D domains. In the cubic
case, the same default of —1/2 in the convergence rate is observed as in the case of
the disk: the graph of the error seems to have a slope of 2.5 (resp. 3.5) instead of 3
(resp. 4) for a P? (resp. P?) method.
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The L2(Omega) error on a quadratic mesh The L2(0mega) error on a cubic mesh

L2(Omega) ermor
=
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— O{h~2.5)
= Oh"3.5)
+ P2
-e- P3

10! 10!
mesh step h mesh step h

Fig. 9: 3D case: plots of the error in L?(2) norm for quadratic meshes (left) and
cubic meshes (right).

Appendix A. Proof of Proposition 4.4.

Following the notations given in definition 3.2, we present the proof of Proposition
4.4 which requires a series of preliminary results given in Propositions A.1, A.3 and
A.4. The proofs of these propositions are inspired by the proofs of [1, Lemma 6.2],
[18, Lemma 4.3] and [18, proposition 4.4] respectively.

PROPOSITION A.1. The map y : & € T\6 — y := Fq(j) () € F,(J) is a smooth
function and for all m > 1, there exists a constant ¢ > 0 independent of h such that,
ch
(As)m
Remark A.2. The proof of this proposition and of the next one rely on the formula

of Faa di Bruno (see [1, equation 2.9]). This formula states that for two functions f
and g, which are of class C™, such that f o g is well defined, then,

(A.2) D" (fog) =3 (D'(f) > a]]D%"),

p=1 i€E(m,p) q=1

(A1) ID™ Yl (715) <

where E(m,p) := {i € N™; 3" i, = p and /" | qi, = m} and ¢; are positives
constants, for all ¢ € E(m,p).

Proof of Proposition A.1. We detail the proof in the 2 dimensional case, the 3D
case can be proved in a similar way.

Consider, the reference triangle T with the usual orientation. Its vertices are
denoted (9;)7_; and the associated barycentric coordinates respectively are: A\; =
1 — 21 — 22, Ao = 2o and A3 = 2;. Consider a non-internal mesh element 7(") such
that, without loss of generality, v; ¢ T'. In such a case, depicted in figure 10, ¢ = 0
and eg = €3 = 1, since vg,v3 € T' N T() . This implies that A\* = Ay + A3 = x5 + 21
and,

) 1 . . 1 R .
(A3) Yy = ;()\2@2 + A3’U3) = m(ﬂfgl@ + xl’U3).
In this case, & = {01} and 7 is defined on T\ {o1}.
By differentiating the expression (A.3) of § and using an induction argument, it
can be proven that there exists a constant ¢ > 0, independent of h, such that,

o ¢
(A4) D y”Loo(T\a.) < W’ for all m > 1.
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>

Fig. 10: Displaying Fj(f) :T — T in a 2D quadratic case (r=2).

Since Fq(f) is the P"-Lagrangian interpolant of Fq(f) on T, then y = Fj(f) o is
a smooth function on T\&. We now apply the inequality (A.2) for y = F}r) o to
estimate its derivative’s norm as follows, for all m > 1,

S ) T 1Dl
D™ (y ||Lw(T\o><ZI(IID”F M@ o e TP ).
=

i€E(m,p) gq=1

where é := (F}T))(’l)(e(r)) and e := 9T N PELT) are displayed in Figure 10. After-
wards, we decompose the sum into two parts, one part taking p = 1 and the second
one for p > 2, and apply inequality (A.4),

ID™ W)l (714)
< D) o) > H S0 (I ED ')
1€EE(m, 1)q 1 p=2 ZGE(mp)q 1
< chA*(T 2= T) cz RN 2= T) < ep(AF) T
p=2

using that ||D( )HLoo(e) < ch and ||Dp(F(r))HLoo(e) < ch", for 2 <p <r+1 (see
[10, page 239]), Where the constant ¢ > 0 is independent of h. This concludes the
proof. 0

~ ProposITION A.3. Assume that I" is C™*2 regular. Then the mapping boy : & €
T\6 + b(y(2)) € T is of class C"*1. Additionally, for any 1 < m < r+1, there exists
a constant ¢ > 0 independent of h such that,

chr+1
(A)m

(A.5) ID™(0) = Y)llLoe (116 <

Proof. Since I is C"*2 regular, the orthogonal projection b is a C"t! function on
a tubular neighborhood of T' (see [16, Lemma 4.1] or [3]). Consequently, following
Proposition A.1, b(y) — y is of class "1 on T'\6.

Secondly, consider 1 <m <r+1. Applying the Faa di Bruno formula (A.2) for
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the function b(y) —y = (b — id) o y, we have,
(A.6)

ID" (1) = )l () < D (IDPO = i) ey D c1H||qu||Lw<T\6)),

p=1 i€E(m,p) q=1

where e(™ = 9T N I’E:) is displayed in Figure 10. Notice that b(v) = v for any
P"-Lagrangian interpolation nodes v € I' N e("). Then zd‘ is the P"-Lagrangian
interpolant of b . Consequently, the interpolation 1nequahty can be applied as

follows (see [19, i]),
Vzee, |DP(b(z) — 2)|| < ch" TP, forany 0 <p <r+1.

This interpolation result combined with (A.1) is replaced in (A.6) to obtain,

")

m

IDZ(b(y) = 1)l e 1) < Z(hT“ P

p=1 i€E(m,p) 4= 1

m h2g=1ta m hP Bl
<c (hT“ ) <e (h”l*P ) < et
°2 xS g o) = oo
where the constant ¢ > 0 is independent of h. This concludes the proof. ]

Now, we introduce the mapping pp(-, such that F (e) F:(FT) + ppey transforms

T =
T into the exact triangle 7€),

PROPOSITION A.4. Let ppm : & € T pre (2) € RE, be given by,
@ {0 it € g,
PTOWEZ ) +2(b(y) —y)  if & € T\6.

The mapping pre is of class C"+! on T and there exist a constant ¢ > 0 independent
of h such that,

(A7) IID™ oy HLDO(T) <ch™,  for 0<m<r+1.

Proof. The mapping pre is of class C’”H(T\(}), being the product of equally
regular functions. Consider 0 < m < r + 1. Applying the Leibniz formula, we have,

D", = D)2 (0(y) — )
m

=3 (D 2l 43 = D)D" 000) ~ ).

Then applying (A.5), we get, for & € T\&7

hrJrl
ID™prer (@) < CZ (e Z(;*)m SR O IS

Since 7 +2 —m > 0, (\*)"*2=™ — 0. Consequently, D™pr( can be continuously
r—o

extended by 0 on & when 0 < m < r+1. Thus pp) € C"*! and the latter inequality
ensures (A.7). d
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We can now prove Proposition 4.4, as mentioned before, its proof relies on the
previous propositions.

Proof of Proposition 4.4. Let T(") € 7;(” be a non-internal curved element. Let

r = F}T)(:fc) € T where # € T. Following the equation (4.1), we recall that,

F(e)

in (2) =2+ prey (2). Then G;lr) can be written as follows,

G\ = Froy o (Bf) ™ = (Ff) + pren) o (Ff) ™ =id) ) + proo o (Ff7) 7.

Firstly, with Proposition A.4, ppo is of class C"T1(T") and Fj(f) is a polynomial,
then Gy) is also C"+1(T().

Secondly, Fq(f) is a C!-diffeomorphism and there exists a constant ¢ > 0 indepen-
dent of h such that (see [10, page 239)),

(A8) IDER) ) < 7

Additionally, by applying (A.7) and (A.8), the following inequality holds,

(A.9) ID(r) e (2 IDCEE) oo iy < ™= = eh” < 1,

Then by applying [10, Theorem 3], F}T) + prem is a Cl-diffeomorphism, being the sum
of a C'-diffeomorphism and a C! mapping, which satisfy (A.9). Therefore, Gg) =

(Fj(f) + prem) o (Fq(f))_1 is a C!-diffeomorphism.
To obtain the first inequality of (4.2), we differentiate the latter expression,

DGy =1, =Dlpre o (Fy)™) = Doz o (Ff”))D(FF)) ™"

Using (A.7) and (A.8), we obtain,

IDG?) =1y, leren < 1Dz gy IDOET) ™ e oy < eh”

where the constant ¢ > 0 is independent of h. Lastly, the second inequality of (4.2)
comes as a consequence of the first one, by definition of a Jacobian. 0
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