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Abstract. We consider the inverse problem of detecting the location and the

shape of several obstacles immersed in a fluid flowing in a larger bounded

domain Ω from partial boundary measurements in the two dimensional case.
The fluid flow is governed by the steady-state Stokes equations. We use a

topological sensitivity analysis for the Kohn-Vogelius functional in order to find
the number and the qualitative location of the objects. Then we explore the
numerical possibilities of this approach and also present a numerical method

which combines the topological gradient algorithm with the classical geometric
shape gradient algorithm; this blending method allows to find the number of

objects, their relative location and their approximate shape.

1. Introduction. We deal in this work with the inverse problem of determining
the number, the position and the shape of relatively small objects inside a two
dimensional fluid. We assume that the fluid motion is governed by the steady-state
Stokes equations. In order to reconstruct the obstacles, we assume that a Cauchy
pair is given on a part of the surface of the fluid, that is a Dirichlet boundary
condition and the measurement of the Cauchy forces. Hence, the identifiability
result of Alvarez et al. [5, Theorem 1.2] implies that this problem could be seen

2010 Mathematics Subject Classification. Primary: 49Q10, 35R30, 49Q12; Secondary: 76D55.
Key words and phrases. Geometric inverse problem, topological sensitivity analysis, topological

gradient, shape gradient, Stokes equations, Kohn-Vogelius functional.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 FABIEN CAUBET, CARLOS CONCA AND MATÍAS GODOY

as the minimisation of a cost functional, which in our case will be a Kohn-Vogelius
type cost functional.

The small size assumption on the objects leads us to perform asymptotic ex-
pansions on the involved functional. For this, we will use the notion of topological
gradient which will determine a criteria in order to minimise the cost functional.
The topological sensitivity analysis consists in studying the variation of a cost func-
tional with respect to the modification of the topology of the domain, for example
when we insert ‘holes’ (or objects) in the domain. It was introduced by Schumacher
in [43] and Sokolowski et al. in [47] for the compliance minimisation in linear elas-
ticity.

Topological sensitive analysis related to Stokes equations have been studied in
the past by several authors, especially relevant are the works of Guillaume et al. [29],
Maatoug [30], Amstutz [6] with steady-state Navier-Stokes equations and [7] with
generalization for some non-linear systems and Sid Idris [44] which develops a de-
tailed work in the two-dimensional case. In all of these works the focus is set to
find topological asymptotic expansions for a general class of functionals where the
system satisfies only Dirichlet boundary conditions.

Closer works to our problem have been presented in the past by Ben Abda et
al. [10] and by Caubet et al. [20]. In the first reference they consider a Neumann
boundary condition on the small objects obtaining general results in two and three
dimensional cases, with a complete development of the theory only on the three
dimensional case. In the work of Caubet et al., they deal with the same problem
as the one we consider here but only again on the three-dimensional case. In our
two-dimensional case, due to the impossibility to have an asymptotic expansion
of the solution of Stokes equations by means of an exterior problem (phenomena
which is related to the Stokes paradox), we have to approximate it by means of a
different problem. The deduction of this approximation is strongly influenced by
the recent work of Bonnaillie-Noël et al. [11]. Indeed the same problem appears for
the Laplace equation: it is based on the fact that the existence of a solution of the
boundary value problem

(1)

 −∆V = 0 in R2\ω
V = u0(z) on ∂ω
V → 0 at infinity

is not guaranteed except when u0(z) = 0. The classical analysis of elliptic equation
in unbounded domain is made in the functional setting of weighted Sobolev spaces.
It is known that (1) has a unique solution in a space containing the constants,
hence this solution is the constant u0(z) which prohibits the condition at infinity
if u0(z) 6= 0. Taking into account of this, we can define the asymptotic expansion
for the Stokes system which is a crucial part in order to obtain the desired expansion
for the functional involved. It is important to remark that (for a given real num-
ber u0(z)) several technical results which lead to the main result are different to the
ones in the three-dimensional setting which involves additional difficulties to our
problem.

From the obtained theoretical results, we present some numerical simulations in
order to confirm and deepen our theoretical results by testing the influence of some
parameters in our algorithm of reconstruction such as the shape and the size of the
obstacles. We also propose an algorithm which joins the topological optimization
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procedure with the classical shape optimization method using the previous compu-
tation of the shape gradient for the Kohn-Vogelius functional made by Caubet et al.
in [21]. This blending method allows not only to obtain the number and qualitative
location of the objects, moreover it allows to approximate the shape of this ones.
Nevertheless, we precise that the geometrical shape optimization step will fail if the
previous topological step doesn’t give the total number of objects.

To conclude, we also mention the recent developments on topological sensitivity
based iterative schemes made by Carpio et al. in [16, 18, 19]. We also refer to some
works using the level set method by Lesselier et al. in [34, 25, 26]. Combinations
of several shape optimization methods was also recently tested by several authors.
Allaire et al. propose in [3] to couple the classical geometrical shape optimization
through the level set method and the topological gradient in order to minimize the
compliance. The same combination is made for another problem by He et al. in [32].
In [15], Burger et al. use also this combination for inverse problems. There, the
topological gradient is incorporated as a source term in the transport Hamilton-
Jacobi equation used in the level set method. Concerning the minimization of the
compliance, Pantz et al. propose in [42] an algorithm using boundary variations,
topological derivatives and homogenization methods (without a level set approach).

1.1. Motivations. This obstacle inverse problem arises, for example, in mold fill-
ing during which small gas bubbles can be created and trapped inside the material
(as it is mentioned in [10]). We can also mention the fact that the most com-
mon devices used to spot immersed bodies, such as submarines or banks of fish, are
sonars, using acoustic waves: Active sonars emit acoustic waves (making themselves
detectable), while passive sonars only listen (and can only detect targets that are
noisy enough). To overcome those limitations, one want to design systems imitat-
ing the lateral line systems of fish, a sense organ they use to detect movement and
vibration in the surrounding water (as emphasized in [23]).

1.2. Organization of the paper. The paper is organized as follows. First, we
introduce the adopted notations. Then, in Section 2, we present in details the con-
sidered problem and give the main idea used to study it: we introduce some per-
turbed domains and the considered Kohn-Vogelius functional. Section 3 is devoted
to the statement of the main result: we give the topological asymptotic expansion
of this functional. In Section 4, we prove the asymptotic expansion of the solution
of the considered Stokes problems when we add small obstacles inside. Then, we use
the resulting estimates to prove the main results by splitting the functional in Sec-
tion 5. We make numerical attempts in Section 6. We explore the efficiency of this
method and point out these limits. Finally we propose a new algorithm in Section 7
which combines the topological gradient techniques with shape gradient techniques
in order to be able to find the number of objects, their approximate location and
their approximate shape. Technical results needed to justify the expansions are
postponed in appendices.

2. The problem setting.

2.1. Introduction of the general notations. For a bounded Lipschitz open
set Ω ⊂ R2, we denote by Lp(Ω), Wm,p(Ω) and Hs(Ω) the usual Lebesgue and
Sobolev spaces. We note in bold the vectorial functions and spaces: Lp(Ω), Wm,p(Ω),
Hs(Ω), etc. Moreover, we denote by W1,p

α (Ω) the weighted Sobolev spaces defined in
Appendix B Definition B.1. For k ∈ N, we denote ‖·‖k,Ω the norm ‖·‖Hk(Ω) and |·|1,Ω
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the semi-norm of H1(Ω). We also use the notations ‖·‖1/2,∂Ω and ‖·‖−1/2,∂Ω to de-

fine respectively the norms ‖·‖H1/2(∂Ω) and ‖·‖H−1/2(∂Ω). We represent the duality

product between H−1/2(∂Ω) and H1/2(∂Ω) using the notation 〈· , ·〉∂Ω. Finally,
n represents the external unit normal to ∂Ω and we define the space

L2
0(Ω) :=

{
p ∈ L2(Ω),

∫
Ω

p = 0

}
.

We here precise that the notation
∫

Ω
means

∫
Ω
p(x)dx which is the classical Lebesgue

integral. Moreover, we use the notation
∫
∂Ω
p to denote the boundary integral∫

∂Ω
p(x)ds(x), where ds represents the surface Lebesgue measure on the boundary.

The aim is to simplify the notations when there is no confusion.

2.2. Framework. Let Ω be a bounded Lipschitz open set of R2 containing a New-
tonian and incompressible fluid with coefficient of kinematic viscosity ν > 0. Let
ω ⊂ R2 a fixed bounded Lipschitz domain containing the origin. For z ∈ Ω and
0 < ε << 1, we denote

ωz,ε := z + εω.

The aim of this work is to detect some unknown objects included in Ω. We assume
that a finite number m∗ of obstacles ω∗z,ε ⊂ Ω have to be detected. Moreover, we
assume that they are well separated (that is: ωzi,εi ∩ωzj ,εj = ∅ for all 1 ≤ i, j ≤ m∗
with i 6= j) and have the geometry form

ω∗zk,εk = z∗k + εkω
∗
k, 1 ≤ k ≤ m∗,

where εk is the diameter and ω∗k ⊂ R2 are bounded Lipschitz domains containing
the origin. The points z∗k ∈ Ω, 1 ≤ k ≤ m∗, determine the location of the objects.
Finally, we assume that, for all 1 ≤ k ≤ m∗, ω∗zk,εk is far from the boundary ∂Ω.

Let f ∈ H1/2(∂Ω) such that f 6= 0 satisfying the compatibility condition

(2)

∫
∂Ω

f · n = 0.

In order to determine the location of the objects, we make a measurement g ∈
H−1/2(O) on a part O of the exterior boundary ∂Ω with O ⊂ ∂Ω, O 6= ∂Ω. Then,

we denote ω∗ε :=
⋃m∗
k=1 ω

∗
zk,εk

and consider the following overdetermined Stokes
problem

(3)


−ν∆u+∇p = 0 in Ω\ω∗ε

divu = 0 in Ω\ω∗ε
u = f on ∂Ω
u = 0 on ∂ω∗ε

σ(u, p)n = g on O ⊂ ∂Ω.

Here u represents the velocity of the fluid and p the pressure and σ(u, p) represents
the stress tensor defined by

σ(u, p) := ν
(
∇u+ t∇u

)
− pI.

We assume here that there is no body force and consider the homogeneous Dirich-
let boundary conditions on the obstacles, which is the so-called no-slip boundary
conditions. Notice that, if divu = 0 in Ω, we have

−ν∆u+∇p = −div (νD(u)) +∇p = −div (σ(u, p)) in Ω,



ON THE DETECTION OF SEVERAL OBSTACLES 5

with D(u) :=
(
∇u+ t∇u

)
. Thus we consider the following geometric inverse prob-

lem:
(4)

Find ω∗ε ⊂⊂ Ω and a pair (u, p) which satisfy the overdetermined problem (3).

To study this inverse problem, we consider two forward problems:

(5)


Find (uεD, p

ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε

and

(6)



Find (uεM , p
ε
M ) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεM +∇pεM = 0 in Ω\ωε
divuεM = 0 in Ω\ωε

σ(uεM , p
ε
M )n = g on O
uεM = f on ∂Ω\O
uεM = 0 on ∂ωε,

where ωε :=
⋃m
k=1 ωzk,εk for a finite number m of objects located in z1, . . . , zm.

These two forward problems are classically well-defined. We refer to [13, 27] for
the results of existence and uniqueness of (uεD, p

ε
D). Notice that the compatibil-

ity condition (2) associated with Problem (5) is satisfied. The existence and the
uniqueness of (uεM , p

ε
M ) is for example detailed in [20, Theorem A.1]. We underline

the fact that pεM does not need to be normalized to be unique due to the Neumann
boundary conditions imposed on O.

One can remark that if ωε coincides with the actual domain ω∗ε , then uεD = uεM
in Ω\ωε. According to this observation, we propose a resolution of the inverse
problem (4) of reconstructing ω∗ε based on the minimization of the following Kohn-
Vogelius functional

FKVε (uεD,u
ε
M ) :=

1

2

∫
Ω\ωε

ν|D(uεD)−D(uεM )|2.

We then define

JKV (Ω\ωε) := FKVε (uεD,u
ε
M ).

We can notice that, integrating by parts the expression of FKVε (uεD,u
ε
M ), we get

that FKVε (uεD,u
ε
M ) = ν

∫
O

(f −uεM ) · (σ(uεD, p
ε
D)n−g). This expression shows that

the error can be expressed by an integral involving only the part of the bound-
ary where we make the measurement and reveals the coupling of the solutions via
this functional. Finally, we can notice that the Dirichlet error is weighted by the
Neumann error, and vice versa.

Remark 1. In order to guarantee that the inverse problem of finding ω∗ε and a
pair (u, p) satisfying (3) has a solution, we have to assume the existence of such
a ω∗ε . This means that the measurement g is perfect, that is to say without error.
Then, according to the identifiability result [5, Theorem 1.2] proved by Alvarez et
al., the domain ω∗ε is unique. Notice that in [5], ω∗ε is assumed to have a C1,1

boundary but we can only assume that it has a Lipschitz boundary in the Stokes
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case (see [9, Theorem 2.1]). Hence, if we find ω∗ε such that JKV (Ω \ ω∗ε ) = 0, then
uεD = uεM in Ω \ ω∗ε , i.e. uεD satisfies (3) and thus ωε = ω∗ε is the real domain.

In the following, for ε = 0, we will consider as a convention that ω0 = ∅ (instead
of ω0 =

⋃m
k=1 {zk}, which comes from the definition of ωε), and therefore: Ω0 = Ω.

Then, we will denote (u0
D, p

0
D) ∈ H1(Ω) × L2

0(Ω) and (u0
M , p

0
M ) ∈ H1(Ω) × L2(Ω)

the respective solutions of the following systems:
Find (u0

D, p
0
D) ∈ H1(Ω)× L2

0(Ω) such that
−ν∆u0

D +∇p0
D = 0 in Ω

divu0
D = 0 in Ω
u0
D = f on ∂Ω

and 
Find (u0

M , p
0
M ) ∈ H1(Ω)× L2(Ω) such that

−ν∆u0
M +∇p0

M = 0 in Ω
divu0

M = 0 in Ω
σ(u0

M , p
0
M )n = g on O
u0
M = f on ∂Ω\O.

3. The main result. From now on, we consider that we seek a single obstacle
ωz,ε := z + εω, located at a point z ∈ Ω. Notice that in the case of several
inclusions, we proceed by detecting the objects one by one. Thus, after detecting a
first obstacle ωz1,ε1 , we work replacing the whole domain Ω by Ω\ωz1,ω1 (and then

we have ∂ωz1,ε1 ⊂ ∂ (Ω\ωz1,ω1) \O) and the results presented below (in particular
the topological derivative) are still valid for a new inclusion ωz,ε. Note that, the
asymptotic expansion of the solution of elliptic boundary value problem in multiply
perforated domains is studied in [12, 36].

3.1. Introduction of the needed functional tools. We recall that the topologi-
cal sensitivity analysis consists in the study of the variations of a design functional J
with respect to the insertion of a small obstacle ωz,ε at the point z ∈ Ω (with no-slip
boundary conditions). The aim is to obtain an asymptotic expansion of J of the
form

J (Ωz,ε) = J (Ω) + ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω,(7)

where ε > 0, ξ is a positive scalar function intended to tend to zero with ε and
where

Ωz,ε := Ω\ωz,ε,
with ωz,ε := z + εω. We summarize the notations concerning the domains in
Figure 1.

The computation of the topological gradient δJ in this work is mainly based on
the paper by Caubet and Dambrine [20] which deals with the presented problem
in the three-dimensional setting. The work of Bonnaillie-Noël and Dambrine [11],
which deals with asymptotic expansions for Laplace equation in a domain with sev-
eral obstacles, was the basis for the choice of the approximating problem in the two-
dimensional setting. We also have been inspired strongly by the works of Sid Idris
in [44] and [28, 29] (written with Guillaume), where the authors study topological
asymptotic expansions for Laplace and Stokes equations in two and three dimen-
sions, which provides us several techniques specially useful for the technical proofs
presented in the appendix. Finally, let us point out the works of Amstutz [6, 7],
where the author develops a topological asymptotic expansion for a cost functional
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O

Ω
∂Ωωz,ε

Ωz,ε

Figure 1. The initial domain and the same domain after inclusion
of an object

in the context of a fluid governed by the stationary Navier-Stokes equations, which
contribute to understand better the possibilities for the asymptotic expansion of the
solutions for our considered systems. It is important to mention that in all these
situations the problem involves only Dirichlet boundary conditions.

We recall the expression of the fundamental solution (E,P ) to the Stokes system
in R2 given by

(8) E(x) =
1

4πν

(
− log ‖x‖I + er

ter
)
, P (x) =

x

2π ‖x‖2
,

with er =
x

‖x‖
; that is −ν∆Ej + ∇P j = δej , where Ej denotes the jth column

of E, (ej)
2
j=1 is the canonical basis of R2 and δ is the Dirac distribution.

3.2. The result. The following theorem gives us the expression of the topological
gradient of the Kohn-Vogelius functional JKV :

Theorem 3.1. For z ∈ Ω, the functional JKV admits the following topological
asymptotic expansion

JKV (Ωz,ε)− JKV (Ω) =
4πν

− log ε
(|u0

D(z)|2 − |u0
M (z)|2) + o

(
1

− log ε

)
,

where u0
D ∈ H1(Ω) and u0

M ∈ H1(Ω) solve respectively Problems (5) and (6) with

ωε = ∅ and o(f(ε)) is the set of functions g(ε) such that limε→0
g(ε)
f(ε) = 0. Therefore,

we have

ξ(ε) =
1

− log ε
and δJKV (z) = 4πν(|u0

D(z)|2 − |u0
M (z)|2)

in the general asymptotic expansion (7).

Remark 2. Notice that, contrary to the 3 dimensional case [20, Theorem 3.1] the
topological gradient doesn’t depend on the geometry of ω. The formula applies for
all shapes in 2D. This phenomena is closely related to the Stokes paradox as been
pointed in [1, 2, 44] and is coherent with the results obtained by several authors in
similar problems, for example [6, 8, 10, 28, 29].

Remark 3. For simplicity in what follows we will work with an origin-centered
inclusion, that means: ωz,ε = ω0,ε =: ωε also consider Ωε := Ω0,ε. The procedure
for all z ∈ Ω is exactly the same just by taking account the change of variable
y = z + εx, instead of y = εx that we will use.
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4. Asymptotic expansion of the solution of the Stokes problem. In order
to provide an asymptotic expansion of the Kohn-Vogelius functional JKV , we need
first an asymptotic expansion of the solution of the Stokes problems (5) and (6).

Unlike the three-dimensional case, the two-dimensional problem cannot be ap-
proximated by an ‘exterior problem’, which in general in this case doesn’t have
a solution which vanishes at infinity. This kind of problem has been treated by
Bonnaillie-Noël and Dambrine in [11] for the Laplace equation in the plane: we
will follow this procedure in order to find a suitable approximation for the Stokes
problem.

We recall that we here focus on the detection of a single obstacle (see the begin-
ning of Section 3). This section is devoted to the proof of the following proposition:

Proposition 1. The respective solutions uεD ∈ H1(Ωz,ε) and uεM ∈ H1(Ωz,ε) of
Problems (5) and (6) admit the following asymptotic expansion (with the subscript
\ = D and \ = N respectively):

uε\(x) = u0
\ (x) + hε(C\(x)−U \(x)) +OH1(Ωz,ε)

(
1

− log ε

)
,

where (U \, P\) ∈ H1(Ω)× L2
0(Ω) solves the following Stokes problem defined in the

whole domain Ω

(9)

 −ν∆U \ +∇P\ = 0 in Ω
divU \ = 0 in Ω

U \ = C\ on ∂Ω,

with hε := 1
− log ε and

(4.1 bis) C\(x) := −4πνE(x− z)u0
\ (z),

where E is the fundamental solution of the Stokes equations in R2 given by (8). The

notation OH1(Ωz,ε)

(
1

− log ε

)
means that there exist a constant c > 0 (independent

of ε) and ε1 > 0 such that for all 0 < ε < ε1∥∥uε\(x)− u0
\ (x)− hε(C\(x)−U \(x))

∥∥
1,Ωz,ε

≤ c

− log ε
.

We recall that we will detail the proof in the case z = 0 (see Remark 3).

4.1. Defining the approximation. As we mentioned above, the approximation
should be done in a different setting compared to the three-dimensional case, fol-
lowing the same strategy as in [11]. This basically consists in building ‘a correction
term’ to the solution given by E(x − z)u0

\ which has a logarithmic term and then

tends to infinity at infinity and is not of finite energy in R2 \ω. Therefore it has to
be considered only in Ω. To this, we consider the pair (U \,P \) ∈ H1(Ω) × L2

0(Ω)
solution of Problem (9) and we combine these solutions with unknown scale param-
eters a(ε) and b(ε). Imposing the desired scales to the error function, we will be able
to determine the scale factors a(ε) and b(ε) which define completely the approxi-
mation for uε\ . Here, we will detail the Dirichlet case, the treatment of Neumann
case is analog.

Consider the solution (UD,PD) ∈ H1(Ω) × L2
0(Ω) of Problem (9) with \ = D.

The idea is to combine this solution and the functionCD to build a proper corrector.
To build this, we search coefficients a(ε) and b(ε), such that the error rεD defined
by:

uεD(x) = u0
D(x) + a(ε)CD(x) + b(ε)UD(x) + rεD(x)



ON THE DETECTION OF SEVERAL OBSTACLES 9

is reduced with respect to Rε
D := uεD−u0

D. Notice that the remainder rεD satisfies:

(10)


−ν∆rεD +∇prεD = 0 in Ωε

div rεD = 0 in Ωε
rεD = −(a(ε) + b(ε))CD(x) on ∂Ω
rεD = −u0

D(x)− a(ε)CD(x)− b(ε)UD(x) on ∂ωε,

where prεD is defined in analogous way with pressure terms, that is

prεD (x) := pεD(x)− p0
D(x)− a(ε)ΠD(x)− b(ε)PD(x)

with ΠD(x) := −4πνP (x) · u0
D(0).

For x ∈ ∂Ω, we have:

rεD(x) = o(1)⇔ a(ε) + b(ε) = o(1),

Let us assume for a while that ω is a disk. Then, for x ∈ ∂ωε, there exists X ∈
∂B(0, 1) such that x = εX and we have

rεD(x) = o(1)⇔ −u0
D(εX)− a(ε)CD(εX)− b(ε)UD(εX) = o(1),

We can expand the terms UD(εX) and u0
D(εX) via Taylor developments:

u0
D(εX) = u0

D(0) +O(ε) and UD(εX) = UD(0) +O(ε),

and thus, we get (noticing that O(ε) is contained in o(1)):

rεD(x) = o(1)⇔ −u0
D(0)− a(ε)CD(εX)− b(ε)UD(0) = o(1),

where i = 1, 2. Therefore, we have the linear system in unknowns (a(ε), b(ε)):{
a(ε) + b(ε) = 0

a(ε)CD(εX) + b(ε)UD(0) = −u0
D(0).

We easily get that b(ε) = −a(ε) which implies:

a(ε) (CD(εX)−UD(0)) = −u0
D(0).

This vectorial equality implies two possible choices for a(ε), recalling that we have
CD(εX) = −4πνE(εX)u0

D(0), we get (for i, j ∈ {1, 2} , i 6= j)

a(ε) =
(u0

D(0))i
c1 (u0

D(0))i − log ε · (u0
D(0))i + c2 (u0

D(0))j + (UD(0))i
,

where c1 and c2 are two positive constants. This leads that a(ε) can be expressed
as a(ε) = 1

C−log ε for another positive constant denoted by C in the two possible

cases, and then, we get the following scale:

1

− log ε
+O

(
1

log2 ε

)
=: hε +O

(
1

log2 ε

)
as ε→ 0.

It is important to notice, as been pointed in [11, Remark 2.2], that this construction
is performed in the case of a disk, where |x| = ε for x ∈ ∂ωε. In the general case, ω
is not a ball and then log |x| 6= log ε for all x ∈ ∂ωε and one has to add correctors
as performed by Maz’ya et al. in [37, Section 2.4, p. 60–64]. This correction of
log ε is of order zero, is then negligible with respect to the logarithmic term. The
linear system in (a(ε), b(ε)) remains unchanged and so hε is still the same rational
fraction.

Hence, we approximate uεD by:

uεD(x) = u0
D(x) + hε(CD −UD) + rεD(x).
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Analogously, we approximate uεM by:

uεM (x) = u0
M (x) + hε(CM −UM ) + rεM (x).

4.2. An explicit bound of rεD and rεM with respect to ε.

4.2.1. The Dirichlet case. Notice that, in this case, the rest rεD satisfies:

(11)


−ν∆rεD +∇prεD = 0 in Ωε

div rεD = 0 in Ωε
rεD = 0 on ∂Ω
rεD = −u0

D − hε(CD −UD) on ∂ωε.

The key point to obtain a bound of rεD is the following lemma. We postpone its
technical proof in Appendix C.

Lemma 4.1. Let ε > 0. For ϕ ∈ H1/2(∂ωz,ε), Φ ∈ H1/2(∂Ω), let (vε, qε) ∈
H1(Ωz,ε)× L2

0(Ωz,ε) be the solution of the problem

(12)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
vε = Φ on ∂Ω
vε = ϕ on ∂ωz,ε.

There exists a constant c > 0 (independent of ε) such that:

(13) ‖vε‖1,Ωz,ε ≤ c
(
‖Φ‖1/2,∂Ω + ‖ϕ(εX)‖1/2,∂ω

)
.

Using this lemma, we get:

‖rεD‖1,Ωε ≤ c
∥∥u0

D(εX) + hε(CD(εX)−UD(εX))
∥∥

1/2,∂ω
.

Notice that:

u0
D(εX) + hε(CD(εX)−UD(εX))

= u0
D(εx) +

1

− log ε
[(log(ε‖X‖)− er

ter) · u0
D(0)−UD(εX)]

= u0
D(εX)− u0

D(0) +
1

− log ε
[(log(‖X‖)− er

ter) · u0
D(0)−UD(εX)]

= ε∇u0
D(ζx) +

1

− log ε
[(log(‖X‖)− er

ter) · u0
D(0)−UD(εX)].

We have used a Taylor development of u0
D in the last equality and ζx is some point

in the line which joins 0 and εX. Now, recalling that ∇u0
D is uniformly bounded

and using the boundness of UD and the other terms by their definition, we get that:

(14) ‖u0
D(εX) + hε(CD(εX)−UD(εX))‖1/2,∂ω ≤ cε+

c

− log ε
≤ c

− log ε
.

Therefore:

‖rεD‖1,Ωε = O

(
1

− log ε

)
,

which concludes the proof of Proposition 1 with \ = D.
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4.2.2. The Neumann case. In this case, the rest rεM satisfies:

(15)


−ν∆rεM +∇prεM = 0 in Ωε

div rεM = 0 in Ωε
rεM = 0 on ∂Ω \O

σ(rεM , prεM )n = 1
log ε [σ(CM −UM ,ΠM − PM )n] on O

rεM = −u0
M − hε(CM −UM ) on ∂ωε,

where the pressure associated to CM is defined explicitly by the expression

(16) ΠM (x) := −4πνP (x) · u0
M (0).

In order to be able to bound this rest, we use the following lemma. Its technical
proof is postponed in Appendix D.

Lemma 4.2. Let ε > 0. For ψ ∈ H−1/2(O), Φ ∈ H1/2(∂Ω\O) and ϕ ∈ H1/2(∂ωz,ε),

let (vε, qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

(17)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
σ(vε, qε)n = ψ on O

vε = Φ on ∂Ω\O
vε = ϕ on ∂ωz,ε.

There exists a constant c > 0 (independent of ε) such that:

(18) ‖vε‖1,Ωz,ε ≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εX)‖1/2,∂ω

)
.

Thanks to this lemma, we know that there exists a constant c > 0 independent
of ε, such that:

(19) ‖rεM‖1,Ωε ≤ c
(

1

− log ε

(
‖σ(CM ,ΠM )n‖−1/2,O + ‖σ(UM , PM )n‖−1/2,O

)
+
∥∥−u0

M (εX)− hε(CM (εX)−UM (εX))
∥∥

1/2,∂ω

)
.

We have

‖σ(CM ,ΠM )n‖−1/2,O ≤ c|CM |1,Ω\B(0,1)

‖σ(UM , PM )n‖−1/2,O ≤ c|UM |1,Ωε .
(20)

In fact, for all φ ∈ H1/2(O) and all η ∈ H1(Ω \ B(0,1)), extension of φ such that
η ∂Ω\O = 0, we have

〈σ(CM ,ΠM )n , φ〉−1/2,1/2,O = ν

∫
Ω\B(0,1)

D(CM ) :∇(η)

≤ c ‖D(CM )‖0,Ω\B(0,1) ‖η‖1,Ω\B(0,1)

and, choosing η such that ‖η‖1,Ω\B(0,1) = ‖φ‖1/2,O, we obtain that

‖σ(CM ,ΠM )n‖−1/2,O ≤ c ‖D(CM )‖0,Ω\B(0,1) = c|CM |1,Ω\B(0,1).

The same procedure for UM in Ωε instead of Ω\B(0, 1) gives the announced bound
for σ(UM , PM ).
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Remark 4. Notice that we need to consider the set Ω \ B(0, 1) for σ(CM ,ΠM )n
in order to obtain a bound independent of ε: we need to consider a set sufficiently
away from zero, due to the definition of CM . For UM , we don’t have this problem
because it is defined in the whole Ω.

Now we need estimates for the functions UM and CM . Notice that, from the
well posedness of the problem (9) with \ = N , we have:

‖UM‖1,Ω ≤ c‖CM‖1/2,∂ω.

But CM (x) = −4πνE(x)u0
\ (0) which is bounded if x is away from zero. The same

applies for the derivative of CM because ∇CM (x) = O(1/r). Therefore, on ∂ω, we
have |CM (x)| ≤ c and |∇CM (x)| ≤ c, and then:

‖UM‖1,Ω ≤ c.

For CM we will need a bound for the term |CM |1,Ω\B(0,1), for this, first notice that
|∇CM | = O(1/r) and let R big enough such that Ω ⊂ B(0, R), therefore:

|CM |1,Ω\B(0,1) ≤ |CM |1,B(0,R)\B(0,1) ≤ c

(∫
B(0,R)\B(0,1)

1

‖x‖2
dx

)1/2

= c (2π lnR)
1/2

= c.

We finally get:

‖UM‖1,Ω ≤ c and |CM |1,Ω\B(0,1) ≤ c.
Then, from (20),

‖σ(CM ,ΠM )n‖−1/2,O ≤ c and ‖σ(UM , PM )n‖−1/2,O ≤ c.

The other term of (19) is treated identically as in the Dirichlet case (see (14)) and
therefore, we get:

‖rεM‖1,Ωε ≤
c

− log ε
+ cε+

c

− log ε
≤ c

− log ε
,

which concludes the proof of Proposition 1 with \ = N .

5. Proof of Theorem 3.1. We recall that we will detail the proof only for the
case of an origin-centered inclusion, i.e. z = 0 (see Remark 3).

5.1. A preliminary lemma. First we need an estimate of the norm ‖·‖1/2,∂ωε of

an uniformly bounded function. Here ‖·‖1/2,∂ωε has to be seen as the trace norm

‖f‖1/2,∂ωε := inf
{
‖u‖H1(Ω\ωz,ε) , u ∈ H1(Ω\ωz,ε),u ∂ωz,ε = f

}
.

Lemma 5.1. Let ε ∈ (0, 1/2). If u ∈ H1(Ω) is such that its restriction to ω1

(i.e. ωε for ε = 1) is C1, then there exists a constant c > 0 independent of ε such
that

‖u‖1/2,∂ωε ≤
c√
− log ε

.

Proof. From Theorem A.1, there exists a constant c > 0 independent of ε such that

‖u‖1/2,∂ωε ≤ c
ε−1/2

√
− log ε

‖u‖L2(∂ωε)
+ c

(∫ ∫
∂ωε×∂ωε

|u(x)− u(y)|2

|x− y|2
ds(x)ds(y)

)
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Since u is uniformly bounded on ∂ωε, we use the change of variables y = εx to
prove that there exists a constant c > 0 independent of ε such that

‖u‖L2(∂ωε)
≤ cε1/2.

Moreover, using the changes of variables x = εX and y = εY , the fact that we
have u(εX) = u(0) + ε∇(u)(ζX)X, ζX ∈ ωε and u(z + εY ) = u(z) + ε∇(u)(ζY )Y ,
ζY ∈ ωε (where ζX and ζY are some points in the lines which join 0 to εX and εY
respectively due to a Taylor expansion), there exists c > 0 independent of ε such
that(∫ ∫

∂ωε×∂ωε

|u(x)− u(y)|2

|x− y|2
ds(x)ds(y)

)1/2

=

(∫ ∫
∂ω×∂ω

ε2 |ε (∇(u)(ζX)X −∇(u)(ζY )Y )|2

ε2 |X − Y |2
ds(x)ds(y)

)1/2

≤ cε.

Therefore, we get:

‖u‖1/2,∂ωε ≤ cε
−1/2 · 1√

− log ε
· ε1/2 + cε ≤ c√

− log ε
.

5.2. Splitting the variations of the objective. Now, we turn our attention to
the Kohn-Vogelius functional given by

JKV (Ωε) =
1

2
ν

∫
Ωε

|D(uεD)−D(uεM )|2.

We first recall the following decomposition:

Lemma 5.2. We have

(21) JKV (Ωε)− JKV (Ω) = AD +AM ,

where

AD :=
1

2
ν

∫
Ωε

D(uεD − u0
D) :D(uεD − u0

D)

+ ν

∫
Ωε

D(uεD − u0
D) :D(u0

D)− 1

2
ν

∫
ωε

|D(u0
D)|2

and

AM :=

∫
∂ωε

[
σ(uεM − u0

M , p
ε
M − p0

M )n
]
· u0

M −
1

2
ν

∫
ωε

|D(u0
M )|2.

Proof. We integrate by parts and use the conditions satisfied by (uεD, p
ε
D), (uεM , p

ε
M ),

(u0
D, p

0
D) and (u0

M , p
0
M ) to obtain this decomposition. For details see [20, Lemma 5.2].

5.3. Asymptotic expansion of AM . We follow here a similar strategy as the one
used in the 3D case detailed for example in [20], in contrast to that work we rely on
the Stokes fundamental solution properties and the definition of the approximation
problem instead of single layer formulas present in the 3D case. We know using
elliptic regularity that ∇u0

M is uniformly bounded on ωε. Thus

(22) − 1

2
ν

∫
ωε

|D(u0
M )|2 ≤ c

∫
ω

ε2 = O(ε2).
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We recall that:

rεM (x) := uεM (x)− u0
M (x)− hε(CM (x)−UM (x))

prεM (x) := pεM (x)− p0
M (x)− hε(ΠM (x)− PM (x)),

where (UM , PM ) ∈ H1(Ω)×L2
0(Ω) solves (9), CM is given by (4.1 bis) (with \ = N)

and ΠM is given by (16). Then the following equality holds

(23)

∫
∂ωε

[
σ(uεM − u0

M , p
ε
M − p0

M )n
]
· u0

M =∫
∂ωε

[
σ(rεM , prεM )n

]
· u0

M + hε

∫
∂ωε

[σ(CM −UM ,ΠM − PM )n] · u0
M .

Let us first focus on the first term in the right-hand side of (23). Using the same
argument as the one used in the deduction of (20), we get:

(24)
∥∥σ(rεM , prεM )n

∥∥
−1/2,∂ωε

≤ c ‖D(rεM )‖0,Ωε .

Therefore, using the explicit upper bound of
∥∥u0

M

∥∥
1/2,∂ωε

given by Lemma 5.1, we

have ∣∣∣∣∫
∂ωε

[
σ(rεM , prεM )n

]
· u0

M

∣∣∣∣ ≤ ∥∥σ(rεM , prεM )n
∥∥
−1/2,∂ωε

∥∥u0
M

∥∥
1/2,∂ωε

≤ c√
− log ε

‖rεM‖1,Ωε .

Then, using the explicit upper bound of ‖rεM‖1,Ωε given by Proposition 1, we obtain

(25)

∣∣∣∣∫
∂ωε

[
σ(rεM , prεM )n

]
· u0

M

∣∣∣∣ ≤ c

log3/2 ε
= O

(
1

(− log ε)3/2

)
.

For the other term∫
∂ωε

[σ(CM −UM ,ΠM − PM )n] · u0
M =

∫
∂ωε

[σ(CM ,ΠM )n] · u0
M

−
∫
∂ωε

[σ(UM , PM )n] · u0
M ,

we study each term separately. For this recall that u0
M (x) = u0

M (0) + ε∇u0
M (ζx),

with ζx ∈ ωε. Then:∫
∂ωε

[σ(CM ,ΠM )n] · u0
M =

∫
∂ωε

[σ(CM ,ΠM )n] · (u0
M − u0

M (0) + u0
M (0))

= ε

∫
∂ωε

[σ(CM ,ΠM )n] · ∇u0
M (ζx)

+

∫
∂ωε

[σ(CM ,ΠM )n] · u0
M (0)

= O(ε) +

∫
∂ωε

[σ(CM ,ΠM )n] · u0
M (0).

We get the last equality because ∇u0
M is uniformly bounded and:∫

∂ωε

[σ(CM ,ΠM )n] =

∫
ωε

div(σ(CM ,ΠM )) = −
∫
ωε

(−ν∆CM+∇ΠM ) = −4πνu0
M (0)
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because of the definition of the pair (CM ,ΠM ) = (−4πνEu0
M (0),−4πνP · u0

M (0))
in terms of the fundamental solution (E,P ) of Stokes equation. Analogously:∫

∂ωε

[σ(UM , PM )n] · u0
M = O(ε) +

∫
∂ωε

[σ(UM , PM )n] · u0
M (0),

because of the definition of the pair (UM , PM ), we get:∫
∂ωε

[σ(UM , PM )n] =

∫
ωε

div σ(UM , PM ) = 0.

Therefore:

(26) hε

∫
∂ωε

[σ(CM −UM ,ΠM − PM )n] · u0
M =

4πν

log ε
|u0
M (0)|2 +O

(
ε

− log ε

)
.

Gathering (22), (25) and (26), we obtain

(27) AM =
4πν

log ε
|u0
M (0)|2 + o

(
1

− log ε

)
.

5.4. Asymptotic expansion of AD. We recall that

AD =
ν

2

∫
Ωε

D(uεD−u0
D) :D(uεD−u0

D)+ν

∫
Ωε

D(uεD−u0
D) :D(u0

D)−1

2
ν

∫
ωε

|D(u0
D)|2

and that:

rεD(x) := uεD(x)− u0
D(x)− hε(CD(x)−UD(x))

prεD (x) := pεD(x)− p0
D(x)− hε(ΠD(x)− PD(x)),

where (UD, PD) ∈ H1(Ω)× L2
0(Ω) solves (9), CD is given by (4.1 bis) (with \ = D

and z = 0) and the pressure associated to CD is defined explicitly by the expression

ΠD(x) := −4πνP (x) · u0
D(0).

Proceeding as in the previous section 5.3, we prove that

−1

2
ν

∫
ωε

|D(u0
D)|2 = O(ε2).

Moreover, using Green’s formula, we have

ν

∫
Ωε

D(uεD − u0
D) :D(u0

D) = 2

∫
∂ωε

(
σ(u0

D, p
0
D)n

)
·
(
uεD − u0

D

)
= −2

∫
∂ωε

(
σ(u0

D, p
0
D)n

)
· u0

D = −ν
∫
ωε

|D(u0
D)|2 = O(ε2).

Now, let us study
1

2
ν

∫
Ωε

D(uεD − u0
D) :D(uεD − u0

D). Using Green’s formula

ν

∫
Ωε

∣∣D(uεD − u0
D)
∣∣2 = 2

∫
∂ωε

[
σ(uεD − u0

D, p
ε
D − p0

D)n
]
·
(
uεD − u0

D

)
= −2

∫
∂ωε

[
σ(rεD, prεD )n

]
· u0

D

−2hε

∫
∂ωε

[σ(CD −UD,ΠD − PD)n] · u0
D.
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Proceeding as in the previous section 5.3 (see inequality (25)), we use an inequal-
ity similar to (24), the asymptotic expansion of uεD given by Proposition 1 and
Lemma 5.1 to obtain∣∣∣∣∫

∂ωε

[
σ(rεD, prεD )n

]
· u0

D

∣∣∣∣ ≤ c ‖u0
D‖1/2,∂ω ‖rεD‖1,Ωε ≤

c

(− log ε)3/2
.

For the other term, we do similar computations as in AM to prove that∫
∂ωε

[σ(CD −UD,ΠD − PD)n] · u0
D = −4πνu0

D(0) +O(ε).

Therefore

(28) AD =
4πν

− log ε
|u0
D(0)|2 + o

(
1

− log ε

)
.

5.5. Conclusion of the proof: asymptotic expansion of JKN . Gathering (21),
(27) and (28), we conclude the proof of Theorem 3.1:

(29) JKV (Ωε)− JKV (Ω) =
4πν

− log ε
(|u0

D(0)|2 − |u0
M (0)|2) + o

(
1

− log ε

)
.

6. Numerical Simulations.

6.1. Framework of the numerical simulations. The use of the topological de-
rivative aims to give us the number of inclusions and their qualitative location. To
make the numerical simulations presented here, we use a P1b-P1 finite elements
discretization to solve the Stokes equations (5) and (6). The framework is the follow-
ing: the exterior boundary is assumed to be the rectangle [−0.5, 0.5]× [−0.25, 0.25].
Except when mentioned, the measurement is assumed to be made on all the faces
except on the one given by y = 0.25. We consider the exterior Dirichlet boundary
condition

f :=

(
1
1

)
.

In order to have a suitable pair (measure g, domain ω∗), we use a synthetic data:
we fix a shape ω∗ (more precisely a finite number of obstacles ω∗1 , . . . , ω

∗
m), solve the

Stokes problem (5) in Ω\ω∗ using another finite elements method (here a P2-P1 fi-
nite elements discretization) and extract the measurement g by computing σ(u, p)n
on O.

In the practical simulations that we present, we add circular objects. In or-
der to determine the radius of these spheres, we use a thresholding method. For
an iteration k, it consists in determining the minimum argument P ∗ of the topo-

logical gradient δJKV in Ω\
(⋃k

j=1 ωj

)
and in defining the set P of the points

P ∈ Ω\
(⋃k

j=1 ωj

)
such that

δJKV (P ) = δJKV (P ∗) + 0.25 ∗ |δJKV (P ∗)| .

Then we fix a minimum radius rmin := 0.01 and we define the radius of the kth

sphere by

(30) rk := max

(
rmin, min

P∈P
(|xP − xP∗ | , |yP − yP∗ |)

)
.

Notice that this method obviously depends on the mesh.
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We use the classical topological gradient algorithm (see for example [22, 29, 31, 6])
that we recall here for reader’s convenience:
Algorithm

1. fix an initial shape ω0 = ∅, a maximum number of iterations M and set i = 1
and k = 0,

2. solve Problems (5) and (6) in Ω\
(⋃k

j=0 ωj

)
,

3. compute the topological gradient δJKV using Formula (29), i.e.

δJKV (P ) = 4πν
(∣∣u0

D(z)
∣∣2 − ∣∣u0

M (z)
∣∣2) ∀P ∈ Ω\

 k⋃
j=0

ωj

 ,

4. seek P ∗k+1 := argmin
(
δJKV (P ), P ∈ Ω\

(⋃k
j=0 ωj

))
,

5. if
∥∥P ∗k+1 − Pj0

∥∥ < rk+1 + rj0 + 0.01 for j0 ∈ {1, . . . , k}, where rj0 is the radius
of ωj0 and rk+1 is defined by (30), then rj0 = 1.1 ∗ rj0 , get back to the step 2.
and i← i+ 1 while i ≤M ,

6. set ωk+1 = B(P ∗k+1, rk+1), where rk+1 is defined by (30),
7. while i ≤M , get back to the step 2, i← i+ 1 and k ← k + 1.

We add to this algorithm a stop test (in addition of the maximum number of
iterations). In every iteration, we compute the functional JKV . This non-negative
functional has to decrease at each iteration. Thus, we stop our implementation

when it is not the case, i.e. when JKV
(

Ω\
(⋃k+1

j=0 ωj

))
> JKV

(
Ω\
(⋃k

j=0 ωj

))
.

Notice that with this algorithm, we add only one object at each iteration. This
method can be slower than the one proposed by Carpio et al. in [17]: they can add
several obstacles simultaneously adding points where the topological derivative is
large and negative, selecting well calibrated thresholds. The same authors in [16]
detailed this approach: they introduce a non-monotone scheme that allows to add
and remove points, to create and destroy contours at each stage and even to make
holes inside an object. However, in our case, adding only one object at each iteration
seems to be more appropriate because otherwise objects can be added wrongly.
Moreover, notice that step 5 comes to the assumption that the objects are well
separated. Finally, since we assumed that the obstacles are far away from the
exterior boundary, we have to take away the added objects on it. Then, if the
minimum of the topological gradient is on the exterior boundary, we push the added
inclusion inside with a depth 0.005 in the rectangular cases. In origin-centered
circular domain we push the added inclusion inside in a quantity proportional to
the point, i.e. if the detected point is (x∗, y∗) we force it to be (η ·x∗, η ·y∗) where η
is usually 0.95 or 0.9.

6.2. First simulations. First we want to detect three circles ω∗1 , ω∗2 and ω∗3 cen-
tered respectively in (0.475,−0.235), (−0.475,−0.225) and (0.470, 0.150) (i.e. near
from the exterior boundary) with shared radius r∗ = 0.013. The detection is quite
efficient (see Figure 2). Indeed we detect three objects with shared radius r = 0.01
for ω∗2 and ω∗3 and r = 0.015 for ω∗1 , we summarized the results in Table 1. Here,
we stop the algorithm because of the functional increases as we can see in Figure 3.

Notice that some iterations are being made just to adjust the size of a detected
object. We can also remark that the values of the cost functional are still relatively
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Figure 2. Detection of ω∗1 , ω∗2 and ω∗3

Table 1. Detection of ω∗1 , ω∗2 and ω∗3

actual objects (0.475, -0.235) (-0.475, -0.225) (0.470, 0.150)
approximate objects (0.484, -0.234) (-0.485, -0.235) (0.485, 0.166)

relative error
‖creal − capp‖/‖creal‖

0.0171 0.0269 0.0325

Figure 3. Evolution of the functional JKV during the detection
of ω∗1 , ω∗2 and ω∗3 .

high and this refers to the fact that, up to our knowledge, there does not exist a
theoretical result of convergence of this algorithm yet.

In this first simulation, the objects are very far away from each other. But what
happens when the obstacles are close from each other? Figure 4 shows that the
detection of close objects is efficient if the distance between the obstacles is big
enough. Indeed, we want to detect three circles ω∗4 , ω∗5 and ω∗6 centered respectively
in (−0.475,−0.225), (0.470, 0.100) and (0.470, 0.130) with shared radius r∗ = 0.01.
We obtain just two circles with shared radius r = 0.01 as summarized in Table 2.
However if we increase the distance of the near circles enough, considering now, for
example, the circle ω∗6bis centered at (0.470, 0.205) we get an efficient detection of
the three circles, as we summarize in Figure 5 and Table 3. The distance needed
for an efficient ‘differentiation’ between the objects is relatively high: the required
distance in this case is about 2rmin.
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Figure 4. Detection of ω∗4 , ω∗5 and ω∗6

Table 2. Detection of ω∗4 , ω∗5 and ω∗6

actual objects (-0.475, -0.225) (0.470, 0.100) (0.470, 0.130)
approximate objects (-0.482, -0.235) (0.480, 0.140) (0.480, 0.140)

relative error
‖creal − capp‖/‖creal‖

0.0180 0.0858 0.0290

Figure 5. Detection of ω∗4 , ω∗5 and ω∗6bis

Table 3. Detection of ω∗4 , ω∗5 and ω∗6bis

actual objects (-0.475, -0.225) (0.470, 0.100) (0.470, 0.205)
approximate objects (-0.480, -0.235) (0.482, 0.105) (0.485, 0.210)

relative error
‖creal − capp‖/‖creal‖

0.0213 0.0271 0.0308

Now the question we asked is: can we detect other shapes than spheres? Thus, we
want to detect objects with different shapes: we explore two interesting examples,
the first one is the detection of several squares: there are simply defined by their
side a = 0.013, and their center (the squares have their sides parallel to the axis).
So we define the square ω∗7 centered in (0.475,−0.225) the square ω∗8 centered in
(−0.475,−0.225) and the square ω∗9 centered in (0.470, 0.150). We obtain Figure 6: a
circle centered in (0.485,−0.235) one centered in (−0.482,−0.235) and one centered
in (0.485, 0.155) with shared radius r = 0.01.

The next example deals with a more complex geometry, we have to detect a
circle ω∗10 and a non convex object ω∗11 composed by several circle arcs as a bound-
ary. The algorithm is capable to detect both objects and increase the radio of the
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Figure 6. Detection of ω∗7 , ω∗8 and ω∗9

approximating ball for the non convex object in order to cover it properly. The
results are adjoint in Figure 7.

Figure 7. Detection of ω∗10 and ω∗11

In conclusion of these first simulations, this method permits to give us the number
of objects we have to determine and their qualitative location if they are separated
enough. Moreover, it is efficient to detect different types of shapes, including ob-
jects with corners, or even non convex obstacles, in the sense that this topological
algorithm is able not only to find the number and relative location of this objects,
it is also able to determine their ‘relative size’ (with respect to its topological set
diameter, for example).

6.3. Influence of the distance to the location of measurements. As been
pointed out in [20] in the 3 dimensional case, the distance to the location of mea-
surements is fundamental in order to get a good detection of the objects. In the
following table 4, we notice that, when we move the object away from the boundary
of measurements, we get a worse estimate of their location, and in a extreme case
a completely wrong detection: more objects than the expected ones. This simple

Table 4. Detection when we move away from boundary

real object approximation
relative error

‖creal − capp‖/‖creal‖
(0.475, 0.220) (0.485, 0.223) 0.0199
(0.435, 0.180) (0.480, 0.184) 0.0960
(0.395, 0.140) (0.480, 0.144) 0.2031
(0.355, 0.100) (0.470, 0.100) 0.3118
(0.300, 0.050) 2 objects no value
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example shows that in our case we have the same problem as in 3-dimensional case:
when we try to detect an object which is ‘far away’ from the boundary, the detection
tends to locate it near the boundary (one of the coordinates is correctly estimated)
but, as the distance increase, we get some problematic behavior, as we see in our
example when the algorithm declares more objects than the real ones. This phe-
nomenon of bad detection can be explained by the regularizing behavior of the
Stokes equations (which is related to the behavior of the fundamental solution (8)).
We emphasize this difficulty of detection pointing out that the functional JKV and
its topological gradient are less sensitive to the addition of obstacles when they are
far away from the exterior boundary.

6.4. Influence of the size of the objects. We now want to study how the size
of an object (or several objects) modifies the quality of the detection given by our
algorithm. In order to do that, we start by testing how is the detection of a single
circle while we increase the radius. Notice that we consider the circle near to the
boundary in order to get the best possible approximation as we have seen in the
previous section. The following table 5 resumes this first test.

Table 5. Detection when we increase the size of the object, with
center rel. error = ‖creal − capp‖/‖creal‖ and radio rel. error =
|rreal − rapp|/rreal

real object approximation
center

rel. error
radio

rel. error
(0.475, 0.225), r=0.013 (0.485, 0.220), r=0.010 0.0213 0.2308
(0.470, 0.220), r=0.030 (0.469, 0.219), r=0.025 0.0027 0.1667
(0.450, 0.200), r=0.050 (0.449, 0.199), r=0.045 0.0029 0.1000
(0.420, 0.160), r=0.080 (0.439, 0.189), r=0.055 0.0771 0.3125

From this we can notice that, when the object is relatively small, the detection
is quite efficient, but the quality is decreasing when the object becomes ‘too big’.
Notice that the main error is linked with the size of the approximation object, and
not with their relative position.

A more extreme example is putting a ‘very big sized’ object. In that case, which
can be seen in Figure 8, we notice that the detection is completely wrong: we get
an incorrect estimate of the number of objects.

Figure 8. Bad Detection for a ‘very big sized’ object

Interesting results we get when we introduce several objects with higher size,
as we can see in Figure 9: the coordinate location is relatively good, but the size
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approximation tends to stuck in one of the objects. The algorithm choses one of

Figure 9. Detection of several ‘big sized’ objects

the objects in order to adjust its size on each iteration.
We can conclude that the detection of the objects depends strongly on the number

of them and the size of them. If we are trying to detect a single object we get a
reasonable tolerance on the size of the object in order to get a good estimates of
their position and size, and only ‘big objects’ are badly detected. In the case of
several objects, the algorithm tends to predict their relative location but only the
size of one object is improved between iterations.

6.5. Simulations with noisy data. We now want to study how robust is our
algorithm in presence of noisy data. For this, we decompose the measurement
g = g1e1 + g2e2 (where (e1, e2) is the canonical basis of R2) and we consider the
following noisy versions of g1 and g2:

gσ1 := g1 + σ
‖g1‖L2(O)

‖u1‖L2(O)
u1 and gσ2 := g2 + σ

‖g2‖L2(O)

‖u2‖L2(O)
u2,

where u1, u2 are random variables given by an uniform distribution in [0, 1) and
σ > 0 is a scaling parameter. Notice that this definition implies that the data g1

and g2 are contaminated by some relative error of amplitude σ in L2(O). Then, the
noisy data will be:

gσ = gσ1 e1 + gσ2 e2.

For this test, we consider the same domain Ω and and the same measure region O
as in the previous ones and the objects are the circles or radius r = 0.015 centered
in (0,−0.230), (−0.350,−0.230) and (0.470, 0.150). The results are presented in
tables 6 and 7.

From this tables we can observe that our algorithm is able to detect with precision
the number and relative position of several small obstacles near the boundary O
where the measurements are taken, when the boundary data g is contaminated with
a moderated amount of noise. When the boundary data contains a higher level of
noise, the relative position becomes less precise and finally the algorithm detects
an incorrect number of obstacles and therefore the detection becomes completely
wrong.

7. A blending method which combines the topological and geometrical
shape optimization algorithms. The previous numerical simulations show that,
using the topological gradient algorithm, one can detect the number of objects and
their qualitative location but we do not have informations about the shapes of the



ON THE DETECTION OF SEVERAL OBSTACLES 23

Table 6. Detection when we introduce noisy data: results.

Noise Level real objects approximations

σ = 0%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.232), r=0.011
(-0.355, -0.231), r=0.013
(0.480, 0.152), r=0.011

σ = 5%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.234), r=0.012
(-0.357, -0.234), r=0.012
(0.483, 0.153), r=0.010

σ = 15%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.235), r=0.010
(-0.358, -0.235), r=0.010
(0.485, 0.153), r=0.010

σ = 25%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

(0.350, -0.235), r=0.010
(-0.358, -0.235), r=0.010
(0.485, -0.026), r=0.010

σ = 30%
(0.350, -0.230), r=0.013
(-0.350, -0.230), r=0.013
(0.470, 0.150), r=0.013

4 objects found

Table 7. Detection when we introduce noisy data: relative errors.

Noise Level
centers

rel. errors
radius

rel. errors

σ = 0%
0.0048
0.0122
0.0207

0.1538
0.0000
0.1538

σ = 5%
0.0096
0.0193
0.0270

0.0769
0.0769
0.2308

σ = 15%
0.0119
0.0225
0.0310

0.2308
0.2308
0.2308

σ = 25%
0.0119
0.0225
0.3580

0.2308
0.2308
0.2308

σ = 30% no value no value

objects. Hence it can provide initial shapes for an optimization method based on
the boundary variation method for which we have to know the number of connected
objects we have to reconstruct (see [21]). We present here a combination of these
two approaches in order to find the number of objects, their locations and their
shapes.

As mentioned in the introduction, combinations of several shape optimization
methods was recently tested by several authors. The most of them used the level
set method (see [3, 32, 15]). We also mention the algorithm proposed by Pantz et
al. in [42] which uses boundary variations, topological derivatives and homoge-
nization methods. We here present an algorithm only based on the classical shape
gradient and the topological gradient, without using the level set method or some
homogenization methods.
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We first recall some theoretical results concerning the computation of the shape
derivative of the Kohn-Vogelius functional (see [21] for details). We precise that, in
this part, in order to simplify the notation, we will not use the index ε: hence we
will use ω = ωε, uD = uεD and uM = uεM .

7.1. Shape derivative of the Kohn-Vogelius functional. Let d0 > 0 fixed
(small). We define Od0

the set of all open subsets ω of Ω with a C1,1 boundary
such that d(x, ∂Ω) > d0 for all x ∈ ω and such that Ω\ω is connected. The set Od0

is referred as the set of admissible geometries. We also define Ωd0
an open set with

a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0
⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

To define the shape derivatives, we will use the velocity method introduced by
Murat and Simon in [39]. To this end, we need to introduce the space of admissible
deformations

U :=
{
θ ∈W2,∞(RN ); Supp θ ⊂ Ωd0

}
.

For details concerning the differentiation with respect to the domain, we refer to the
papers of Simon [45, 46] and the books of Henrot and Pierre [33] and of Soko lowski
and Zolésio [48].

We consider a domain ω ∈ Od0 . Then, we have the following proposition (see [21,
Proposition 2]):

Proposition 2 (First order shape derivative of the functional). For V ∈ U , the
Kohn-Vogelius cost functional JKV is differentiable at ω in the direction V with

(31) DJKV (Ω\ω) ·V = −
∫
∂ω

(σ(w, q) n) · ∂nuD(V · n) +
1

2
ν

∫
∂ω

|D(w)|2 (V · n),

where (w, q) is defined by

w := uD − uM and q := pD − pM .
Moreover, Proposition 4 in [21] explains the difficulties encountered to solve

numerically this problem. Indeed, the gradient has not a uniform sensitivity with
respect to the deformation direction. Hence, since the problem is severely ill-posed,
we need some regularization methods to solve it numerically, for example by adding
to the functional a penalization in terms of the perimeter (see [14] or [24]). Here
we choose to make a parametric regularization using a parametric model of shape
variations.

7.2. Numerical simulations.

7.2.1. Framework for the numerical simulations. We follow the same strategy than
in [21] that we recall for readers convenience. We restrict ourselves to star-shaped
domains and use polar coordinates for parametrization: the boundary ∂ω of the
object can be then parametrized by

∂ω =

{(
x0

y0

)
+ r(θ)

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
,

where x0, y0 ∈ R and where r is a C1,1 function, 2π-periodic and without double
point. Taking into account of the ill-posedness of the problem, we approximate the
polar radius r by its truncated Fourier series

rM (θ) := aN0 +

N∑
k=1

aNk cos(kθ) + bNk sin(kθ),
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for the numerical simulations. Indeed this regularization by projection permits to
remove high frequencies generated by cos(kθ) and sin(kθ) for k >> 1, for which the
functional is degenerated.

Then, the unknown shape is entirely defined by the coefficients (ai, bi). Hence,
for k = 1, . . . , N , the corresponding deformation directions are respectively,

V 1 := V x0 :=

(
1
0

)
, V 2 := V y0 :=

(
0
1

)
, V 3(θ) := V a0(θ) :=

(
cos θ
sin θ

)
,

V 2k+2(θ) :=V ak(θ) :=cos(kθ)

(
cos θ
sin θ

)
,V 2k+3(θ) := V bk(θ) := sin(kθ)

(
cos θ
sin θ

)
,

θ ∈ [0, 2π). The gradient is then computed component by component using its
characterization (see Proposition 2, formula (31)):(

∇JKV (Ω\ω)
)
k

= DJKV (Ω\ω) · V k, k = 1, . . . , 2N + 3.

This equality is simply that

lim
t→0

JKV
(
(I + tV k)(Ω\ω)

)
− JKV (Ω\ω)

t
= DJKV (ω) · V k.

7.2.2. Algorithm. The first step is the use of the previous topological gradient algo-
rithm described in Section 6.1. It permits to obtain the number of objects and their
qualitative location which represents an initial shape ω0 for a reconstruction using
a boundary variation method. Then, the geometrical optimization method used for
the numerical simulation is here the classical gradient algorithm with a line search
(using the Wolfe conditions: see for example [40, eq. (3.6) page 34]):
Algorithm

1. fix a number of iterations M and take the initial shape ω0 (which can have
several connected components) given by the previous topological algorithm,

2. solve problems (5) and (6) with ωε = ωi,
3. extract ∇uD, ∇uN , pD and pM on ∂ωi and compute ∇JKV (Ω \ ωi) using

formula (31),
4. use the Wolfe conditions to compute a satisfying step length αi,
5. move the coefficients associated to the shape: ωi+1 = ωi − αi∇JKV (ωi),
6. get back to the step 2. while i < M .

We precise that we here use the adaptive method described in [21, Section 4.3]. It
consists in increasing gradually the number of parameters during the algorithm to
a fixed final number of parameters. For example, if we want to work with nineteen
parameters (which will be the case here), we begin by working with two parameters
during five iterations, then with three parameters (we add the radius) during five
more iterations, and then we add two search parameters every fifteen iterations.
The algorithm is then the same than the one described above only replacing step 5.
by

ωi+1(1 : m) = ωi(1 : m)− αi∇JKV (ωi)(1 : m),

where ωi(1 : m) represents the m first coefficients parametrizing the shape ωi (the
same notation holds for ∇JKV (Ω \ ωi)(1 : m)). The number m grows to the fixed
final number of parameters following the procedure described previously.

To finish, we precise that we use the finite elements library Mélina (see [35]) to
make this geometrical shape optimization part.
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7.2.3. Numerical simulations. The framework is the following: we assume the kine-
matic viscosity ν is equal to 1, the exterior boundary is assumed to be the unit circle
centered at the origin and we consider the exterior Dirichlet boundary condition

f :=

(
n2

−n1

)
=

{(
sin θ
− cos θ

)
, θ ∈ [0, 2π)

}
,

where n = (n1,n2) is the exterior unit normal. Notice that f is such that the
compatibility condition (2) is satisfied. We assume that we make the measurement
on the whole disk ∂Ω except the lower right quadrant. Here, we want to detect
two squares ω∗12 and ω∗13 centered respectively at (−0.6 , 0.3) and (0.6 , 0.3) with a
distance between the center and the vertices equal to 0.2.

The first step, which is the topological approach, leads to two circles of radius 0.15
centered respectively at (−0.573 , 0.328) and (0.533 , 0.328) (see the ‘initial shape’
in Figure 10). Since the real objects are “big”, we impose here rmin = 0.15 in the
topological algorithm (see (30)). This means that, practically, we assume that we
know the characteristic size of the objects, i.e. if the objects are small or big.

Then, the shape optimization algorithm leads to a good approximation of the
shapes, at least for one of the obstacle (see Figure 10). We also underline the fact

Figure 10. Detection of ω∗12 and ω∗13 with the combined approach
(the initial shape is the one obtained after the “topological step”)
and zoom on the improvement with the geometrical step for ω∗13

that, after the topological step, the cost of the functional is here about 1.26 and
that, after the geometrical step, we obtain a cost about 2 · 10−2 which qualitatively
means that we improved the detection.

In conclusion, this blending method which combines the topological and the
geometrical shape methods leads to good result in the identification of obstacle
immersed in a fluid: we detect both the number of obstacles, their locations and
their shapes.

8. Conclusion. Using a Kohn-Vogelius approach, we have detected the number of
potential objects immersed in a two dimensional fluid and their qualitative location.
To do this, we have computed the topological gradient of the considered Kohn-
Vogelius functional using an asymptotic expansion of the solution of the Stokes
equations in the whole domain when we add small obstacles inside: we adapted
the usual 3D techniques to the two dimensional setting case, in which the classical
asymptotic expansion of the solution of the Stokes equations are no longer valid.
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We obtain a formula valid for any geometry of small obstacles, which is a particular
characteristic of the two dimensional setting of the problem. We have made some
numerical attempts which have shown that ‘not too big’ obstacles close to the part
of the boundary where we make the measurements can be detected. Once these
restrictions are satisfied, the detection is quite efficient, even for objects with corners
or non convex shapes. Finally, we have proposed and implemented an algorithm
which combines the topological sensitive analysis approach with the classical shape
derivative approach. This blending method led us to detect the number of objects
using a topological step and, if this first step actually gives the total number of
obstacles, a geometrical shape optimization step detects their approximate location
and approximate shape from only the boundary measurements. This method gives
interesting results in the simulations.

Appendix A. A result concerning the space of traces. Here we recall a result
used in the paper concerning the boundary values of functions, in particular when
domains depend on a parameter (see [38, Chapter 4]):

Theorem A.1 ([38] Section 4.1.3. page 214). Let Ω and ω be two bounded simply
connected domains of RN (N ≥ 2) of class C0,1. Let p ∈ (1,+∞), ε ∈ (0, 1/2)
and ωε := εω. Let us assume that ωε ⊂ Ω and that there exists a constant c > 0
depending only of N , p, ω and Ω such that d(ωε, ∂Ω) > cε. Then

〈·〉p,∂ωε ∼ a(ε) ‖·‖Lp(∂ωε)
+ [·]p,∂ωε

where

〈f〉p,∂ωε := inf
{
‖u‖W1,p(Ω\ωε) , u ∈W1,p(Ω\ωε), u ∂ωε = f

}
,

a(ε) :=


ε

1−N
p min(1, ε

N
p −1), for p < N

ε
1−N
p min(1, |log ε|

1−p
p ), for p = N

ε
1−N
p , for p > N,

and

[f ]1,∂ωε := |∂ωε|−1
∫ ∫

∂ωε×∂ωε
|f(x)− f(y)|ds(x)ds(y)

[f ]p,∂ωε :=

(∫ ∫
∂ωε×∂ωε

|f(x)− f(y)|p

|x− y|N+p−2
ds(x)ds(y)

)1/p

for p ∈ (1,+∞).

Appendix B. Some results on the exterior Stokes problem.

B.1. Definition of the weighted Sobolev spaces. First, we recall the defini-
tion of the weighted Sobolev spaces. We introduce the weight function ρ given by
ρ(x) := (2 + |x|2)1/2 and the following Sobolev spaces (for more details, see [4]):

Definition B.1. Let 1 < p < ∞. For each real number α and each open set
O ⊂ Rd, we set

Lpα(O) := {u ∈ D′(O), ραu ∈ Lp(O)} ,

W1,p
α (O) :=

{ {
u ∈ D′(O), u ∈ Lpα−1(O), ∇u ∈ Lpα(O)

}
if d

p + α 6= 1,{
u ∈ D′(O), (ln(ρ))−1u ∈ Lpα−1(O), ∇u ∈ Lpα(O)

}
if d

p + α = 1.
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Consider now the space
◦

W
1,p

α (O) := D(O)
‖·‖

W
1,p
α (O) . It is standard to check that

◦
W

1,p

α (O) =
{
v ∈W1,p

α (O), v ∂O = 0
}
.

The dual space of
◦

W
1,p

α (O) is denoted by W−1,p′

−α (O), where p′ is such that 1
p+ 1

p′ = 1

(it is a subspace of D′(O)).

Notice that these spaces are reflexive Banach spaces with respect to the norms:

‖u‖Lpα(O) := ‖ραu‖Lp(O) ,

‖u‖W1,p
α (O) :=


(
‖u‖pLpα−1(O) + ‖∇u‖pLpα(O)

)1/p

if d
p + α 6= 1,(∥∥∥ u

ln(ρ)

∥∥∥p
Lpα−1(O)

+ ‖∇u‖pLpα(O)

)1/p

if d
p + α = 1.

B.2. The exterior Stokes problem in two dimensions. The following results
are presented in [44], we present them here for reader’s convenience. We first recall
the following lemma concerning the Stokes problem in the whole space R2:

Lemma B.2. Let (u, p) be a solution of

(32)

{
−ν∆u+∇p = 0 inR2

divu = 0 inR2.

Then every solution which is a tempered distribution should be a polynomial.

Proof. Applying Fourier transform to (32) we immediately notice that the support
of û and p̂ is contained in {0}. Therefore, those distributions should be a finite sum
of Dirac deltas, which implies that u and p are polynomials.

B.2.1. Decomposition of the solution of the exterior Stokes problem. Let ω be a

Lipschitz open set of R2 and let us define W(ωc) :=
{
v ∈W1,2

0 (ωc) ; div v = 0
}

where ωc := R2 \ω. W(ωc) is a closed subspace of W1,2
0 (ωc) when we consider the

induced norm. Notice that the bilinear form a(u,v) =

∫
ωc
D(u) : D(v) is coercive

in W(ωc) (as well as in W1,2
0 (ω)). Therefore, for a given ϕ ∈ H1/2(∂ω) such that∫

∂ω

ϕ · n = 0, the problem:

(33)

 −ν∆u+∇p = 0 in ωc

divu = 0 in ωc

u = ϕ on ∂ω,

is well-posed and has a unique solution in W1,2
0 (ωc) (and also in W1,2

0 (ω)). We
present here an explicit representation of u and p.

In such case, we have:

−ν∆u+∇p = [D(u)n]δ∂ω =: T in D′(R2).

Now, let us define:
v := E ∗ T , q := P ∗ T ,

where (E,P ) is the fundamental solution of the Stokes system given by (8) and ∗
denotes the convolution product. Then,

−ν∆v +∇q = T in D′(R2).
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Now notice that the pair (u− v, p− q) solves (32), then by the previous lemma
this solution should be a polynomial. Then:

u = E ∗ T +U1 =

∫
∂ω

t(x)E(y − x)ds(x) +U1,

p = P ∗ T + P1 =

∫
∂ω

t(x)P (y − x)ds(x) + P1,

where U1 and P1 are polynomials and t = D(u)n.
Using a Taylor development for u we get a logarithmical term, due to:

E(y − x) = E(y)−∇E(θ(y, x))x,

where θ(y, x) = y − αx with α ∈ (0, 1), then:

u(y) = E(y)

∫
∂ω

t(x)ds(x)−
∫
∂ω

t(x)∇E(θ(y, x))xds(x) +U1.

But log 6∈W1,2
0 (ωc), which implies:∫

∂ω

t(x)ds(x) = 〈t, 1〉 = 0.

Also, due to U1 ∈ W1,2
0 (ωc), we must have U1 = λ, where λ is a constant.

Therefore, we have:

u = O(1) at infinity.

A similar reasoning gives p(y) = O(1/r), where r = ‖y‖, and P1 = 0. Therefore we
have:

(34) u(y) = λ−
∫
∂ω

t(x)∇E(θ(y, x))x ds(x) = λ+W (y),

(35) p(y) = −
∫
∂ω

t(x)∇P (θ(y, x))x ds(x),

and u, p are bounded at infinity. Moreover, we have (see for example [44, Sec-
tion 2.5.1]) W (y) = O(1/r) which implies, due to the well-posedness of the problem
the existence of c > 0 such that:

(36) |λ| ≤ c‖ϕ‖1/2,∂ω.
The study of the function W in (34) will be useful for important results: we

study a priori estimates for this function, in a similar way as Guillaume in [28].

B.2.2. Some notations and preliminaries. For a given function u ∈ H1(Ω), we define

the function ũ on Ω̃ := Ω/ε by ũ(y) = u(x), y = x/ε. Since ∇xu(x) = (∇yũ(y))/ε,
we obtain

|u|21,Ω =

∫
Ω

|∇xu(x)|2 dx =

∫
Ω̃

|∇yũ(y)|2 dy.

Hence,

(37) |u|1,Ω = |ũ|1,Ω̃ .

Similarly, we obtain

(38) ‖u‖0,Ω = ε ‖ũ‖0,Ω̃ .

By changing the origin, for z ∈ Ω, the same equalities hold with the change of
variables y = (x− z)/ε.



30 FABIEN CAUBET, CARLOS CONCA AND MATÍAS GODOY

Finally, let us introduce some other domains. Let R > 0 be such that the closed
ball B(z,R) is included in Ω and ωz,ε ⊂ B(z,R). We define the domains

ΩzR := Ω\B(z,R) and Dz
ε := B(z,R)\ωz,ε

(see Figure 11). Thus, in particular, Ω0
R := Ω\B(0, R) and D0

ε := B(0, R)\εω.

∂Ωωz,ε

B(z,R)

ΩzR Dz
ε

Figure 11. The truncated domain

B.2.3. Estimates for W . We have the following estimates for W :

Lemma B.3. Let ϕ ∈ H1/2(∂ω) such that

∫
∂ω

ϕ · n = 0 and z ∈ Ω. We consider

(u, p) ∈W1,2
0 (R2\ω)× L2(R2\ω) the solution of the Stokes exterior problem −ν∆u+∇p = 0 in R2\ω

divu = 0 in R2\ω
u = ϕ on ∂ω.

Recall that in this case u = λ+W (see (34)). Then there exists a constant c > 0
(independent of ε and ϕ) and ε1 > 0 such that for all 0 < ε < ε1

‖W ‖0,Dzε/ε ≤ c (− log ε)1/2 ‖ϕ‖1/2,∂ω , ‖W ‖0,ΩzR/ε ≤ c ‖ϕ‖1/2,∂ω ,
|W |1,Dzε/ε ≤ c ‖ϕ‖1/2,∂ω and |W |1,ΩzR/ε ≤ c ε2 ‖ϕ‖1/2,∂ω .

This implies: ∥∥∥∥W (
x− z
ε

)∥∥∥∥
1,Ωz,ε

≤ c ‖ϕ‖1/2,∂ω .

Proof. For sake of simplicity we will prove this result for z = 0, the general case
comes from linear change of coordinates.

By the formula given in (34) we notice that: |W (y)| ≤ c

‖y‖
‖ϕ‖1/2,∂ω. Therefore:

|W (x/ε)| ≤ c ε

‖x‖
‖ϕ‖1/2,∂ω.

Analogously: |∇W (x/ε)| ≤ c ε2

‖x‖2
‖ϕ‖1/2,∂ω.
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Using these estimates we can bound the following quantities:

‖W ‖
0,B(0,R/ε)\B(0,M)

=

(∫
B(0,R)\B(0,εM)

|W (x/ε)|2 1

ε2
dx

)1/2

≤ c‖ϕ‖1/2,∂ω

(∫
B(0,R)\B(0,εM)

1

‖x‖2
dx

)1/2

= c‖ϕ‖1/2,∂ω(logR− log εM)1/2

≤ c‖ϕ‖1/2,∂ω(− log ε)1/2.

and

‖∇W ‖
0,B(0,R/ε)\B(0,M)

≤

(∫
B(0,R)\B(0,εM)

c
ε4

‖x‖4
‖ϕ‖21/2,∂ωdx

)1/2

≤ cε‖ϕ‖1/2,∂ω.
Now, noticing that, in B(0,M) \ ω, we have classic a priori bounds for W :

‖W ‖1,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω,
we get:

‖W ‖0,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω and |W |1,B(0,M)\ω ≤ c‖ϕ‖1/2,∂ω,
and then:

‖W ‖0,D0
ε/ε
≤ ‖W ‖

0,B(0,R/ε)\B(0,M)
+ ‖W ‖0,B(0,M)\ω ≤ c (− log ε)−1/2 ‖ϕ‖1/2,∂ω ,

|W |1,D0
ε/ε
≤ |W |

0,B(0,R/ε)\B(0,M)
+ |W |0,B(0,M)\ω ≤ c ‖ϕ‖1/2,∂ω .

The other estimates can be computed directly:

‖W ‖0,Ω0
R/ε

= ‖W ‖
0,Ω/ε\B(0,R/ε)

≤

(∫
Ω\B(0,R)

c
ε2

‖x‖2
‖ϕ‖21/2,∂ω

1

ε2
dx

)1/2

≤ c‖ϕ‖1/2,∂ω

|W |0,Ω0
R/ε

= |W |
0,Ω/ε\B(0,R/ε)

≤

(∫
Ω\B(0,R)

c
ε4

‖x‖4
‖ϕ‖21/2,∂ωdx

)1/2

≤ cε2‖ϕ‖1/2,∂ω.
From the previous inequalities we can estimate the size of the function W

(
x
ε

)
in Ωε, indeed, by change of variables (recall the equalities given by (37), (38)), we
get that, for small ε:

1

ε

(∥∥∥W̃∥∥∥
0,D0

ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

)
= ‖W ‖0,D0

ε/ε
+‖W ‖0,Ω0

R/ε
≤ c (− log ε)−1/2 ‖ϕ‖1/2,∂ω ,

then: ∥∥∥W̃∥∥∥
0,D0

ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

≤ c ε (− log ε)−1/2 ‖ϕ‖1/2,∂ω .

But, by equivalence of norms, we know there exists a constant M which doesn’t
depend of ε such that:

M
∥∥∥W̃∥∥∥

0,Ωε
≤
∥∥∥W̃∥∥∥

0,D0
ε

+
∥∥∥W̃∥∥∥

0,Ω0
R

where we conclude ∥∥∥W̃∥∥∥
0,Ωε
≤ c ε (− log ε)−1/2 ‖ϕ‖1/2,∂ω .
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Analogously we get: ∣∣∣W̃ ∣∣∣
1,Ωε
≤ c ‖ϕ‖1/2,∂ω

and therefore: ∥∥∥W̃∥∥∥
1,Ωε

=
∥∥∥W (x

ε

)∥∥∥
1,Ωε
≤ c ‖ϕ‖1/2,∂ω .

Appendix C. Proof of Lemma 4.1. The following results are based in the ones
presented in [44, Chapter 3]. We will use the notations introduced in section B.2.2.
The statements will be presented for general domain Ωz,ε, but for sake of simplicity
we will work in the proofs in the case z = 0, the general case comes from a linear
change of coordinates. The proof of Lemma 4.1 is decomposed in the following three
lemmas.

Lemma C.1. Let ε > 0. For Φ ∈ H1/2(∂Ω), let (vε, qε) ∈ H1(Ωz,ε)× L2
0(Ωz,ε) be

the solution of the Stokes problem

(39)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
vε = Φ on ∂Ω
vε = 0 on ∂ωz,ε.

Then there exists a constant c > 0 (independent of ε and Φ) and ε1 > 0 such that
for all 0 < ε < ε1

(40) ‖vε‖1,Ωz,ε ≤ c ‖Φ‖1/2,∂Ω .

Proof. Let ε0 > 0. Consider vε0 solution of (39) for ε = ε0. It satisfies:

|vε0 |1,Ωε0 =

∫
Ωε0

|∇vε0 |2dx ≤ c(ε0)‖Φ‖1/2,∂Ω.

Now consider ṽε0 the extension by 0 of vε0 to all Ω, and consider v the solution of
the system  −ν∆v +∇q = 0 in Ω

div v = 0 in Ω
v = Φ on ∂Ω,

i.e. when we consider ε = 0 in (39). Notice that, by minimization of energy, we
have:

|v|1,Ω ≤ |ṽε0 |1,Ω = |vε0 |1,Ωε0 .
Also, the well-posedness of the problem gives the existence of c > 0 (c = c(Ω)) such
that:

|v|0,Ω ≤ c‖Φ‖1/2,∂Ω.

Now, notice that if ε1 < ε0 we have ε1ω ⊂ ε0ω and then Ωε0 ⊂ Ωε1 , so, for all
ε ∈ (0, ε1), we have:

|vε|1,Ωε ≤ |ṽε0 |1,Ωε = |vε0 |1,Ωε0 ≤ c(ε0)‖Φ‖1/2,∂Ω.

Noticing that ṽε − v ∈ H1
0(Ω) and thanks to Poincaré inequality, we have:

|ṽε|0,Ω = |vε|0,Ωε ≤ |ṽε − v|0,Ω + |v|0,Ω ≤ c|ṽε − v|1,Ω + c‖Φ‖1/2,∂Ω

≤ c|vε|1,Ωε + c|v|1,Ω + c‖Φ‖1/2,∂Ω ≤ c(ε0,Ω)‖Φ‖1/2,∂Ω.
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Also, denoting by ṽε0 the extension by zero of vε0 to Ωε, we get, by minimization
of energy that:

|vε|1,Ωε ≤ |ṽε0 |1,Ωε = |vε0 |1,Ωε0 ≤ c(ε0)‖Φ‖1/2,∂Ω.

Combining the last two inequalities we get the desired result.

From the previous Lemma, we get the following one:

Lemma C.2. Let ε > 0. For ϕ ∈ H1(Ω) such that divϕ = 0 in Ω, let (vε, qε) ∈
H1(Ωz,ε)× L2

0(Ωz,ε) be the solution of the Stokes problem

(41)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
vε = 0 on ∂Ω
vε = ϕ on ∂ωz,ε.

If there exists q ∈ L2
0(Ω) such that −ν∆ϕ+∇q = 0 in Ω, then there exists a constant

c > 0 (independent of ε and ϕ) and ε1 > 0 such that for all 0 < ε < ε1

(42) ‖vε‖1,Ωz,ε ≤ c ‖ϕ‖1/2,∂Ω .

Proof. We consider the pair (wε := vε −ϕ, lε := qε − q). This satisfies:
−ν∆wε +∇lε = 0 in Ωz,ε

divwε = 0 in Ωz,ε
wε = −ϕ on ∂Ω
wε = 0 on ∂ωz,ε.

By the previous lemma, we have for all ε < ε1:

‖wε‖1,Ωz,ε ≤ c‖ϕ‖1/2,∂Ω.

Noticing that Ψ is defined in the whole domain and is the solution of the Stokes
system, we have:

‖ϕ‖1,Ωz,ε ≤ ‖ϕ‖1,Ω ≤ c‖ϕ‖1/2,∂Ω.

Therefore, we finally get:

‖vε‖1,Ωz,ε ≤ ‖wε‖1,Ωz,ε + ‖ϕ‖1,Ωz,ε ≤ c‖ϕ‖1/2,∂Ω.

Lemma C.3. Let ε > 0. For λ ∈ R2, let (vε, qε) ∈ H1(Ωz,ε) × L2
0(Ωz,ε) be the

solution of the Stokes problem

(43)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
vε = 0 on ∂Ω
vε = λ on ∂ωz,ε.

There exists a constant c > 0 (independent of ε) such that:

(44) ‖vε‖1,Ωz,ε ≤ c
|λ|√
− log ε

.

Proof. Consider the following sets:

Γr :=
{
x ∈ R2 : ‖x‖ = r

}
and C(r1, r2) :=

{
x ∈ R2 : r1 < ‖x‖ < r2

}
.

Also, consider the following quantity:

r∗ := sup {r > 0 : B(0, r) ⊂ Ω \ ω} .
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Let us now consider the pair (wε, lε), the unique solution of the system:
−ν∆wε +∇lε = 0 in C(1, r∗/ε)

divwε = 0 in C(1, r∗/ε)
wε = 0 on Γr∗/ε
wε = λ on Γ1.

Also, consider the functions v̂ε(y) = vε(x) and q̂ε(y) = 1
εqε(x) with y = x

ε . The
pair (v̂ε, q̂ε) satisfies:

−ν∆v̂ε +∇q̂ε = 0 in
Ω

ε

div v̂ε = 0 in
Ω

ε

v̂ε = 0 on ∂

(
Ω

ε

)
v̂ε = λ on ∂ω.

Notice that we have: ω ⊂ B(0, 1) ⊂ B
(

0, r
∗

ε

)
⊂ Ω

ε . Now consider w̃ε the extension

of wε to
Ω

ε
\ ω, by zero in the outer part (respect to the original domain) of the

extended domain and by λ in the inner part of the extended domain. Therefore,
by the principle of minimization of energy we have:

(45) |vε|1,Ωε = |v̂ε|1,Ωε \ω ≤ |w̃ε|1,Ωε \ω = |wε|1,C(1, r
∗
ε ).

Let ψ := λ+4πνE λ
log(r∗/ε) and q := 4πνP · λ

log(r∗/ε) where (E,P ) is the fundamental

solution of Stokes equations in R2 given by (8). We have:
−ν∆ψ +∇q = 0 in C(1, r∗/ε)

divψ = 0 in C(1, r∗/ε)

ψ = er
terλ

log(r∗/ε) on Γr∗/ε

ψ = λ+ er
terλ

log(r∗/ε) on Γ1,

and a computation provides:

|ψ|1,C(1,r∗/ε) ≤ c
|λ|√
− log ε

.

Now, notice that the pair (wε−ψ, lε−q) is solution of the Stokes equations with

boundary condition − er
terλ

log(r∗/ε) in both borders of the domain. Therefore, using the

previous lemmas we get that:

|wε −ψ|1,C(1,r∗/ε) = |ŵε − ψ̂|1,C(ε,r∗) ≤
c

− log ε
‖erterλ‖1/2,Γ∗r ≤

c|λ|
− log ε

.

So, we get by (45):

|vε|1,Ωε ≤ |wε|1,C(1, r
∗
ε ) ≤ |wε −ψ|1,C(1, r

∗
ε ) + |ψ|1,C(1, r

∗
ε )

≤ c
|λ|
− log ε

+ c
|λ|√
− log ε

≤ c |λ|√
− log ε

.

Finally, consider ṽε the extension of vε to Ω by λ (notice that this extension is
in H1

0(Ω), therefore we can use Poincaré inequality). We have:

‖vε‖1,Ωε ≤ ‖vε‖0,Ωε + |vε|1,Ωε ≤ c‖ṽε‖0,Ω + |vε|1,Ωε
≤ c|ṽε|1,Ω + |vε|1,Ωε = (c+ 1)|vε|1,Ωε ≤ c

|λ|√
− log ε

.
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Proof of Lemma 4.1. If ϕ is constant on ∂ωε and Φ = 0, the previous lemma gives
the desired result. If Φ 6= 0 another previous lemma gives the desired estimate. So,
let’s focus on the case where ϕ is not constant. Let V the bounded solution of −ν∆V +∇PV = 0 in R2 \ ω

divV = 0 in R2 \ ω
V = ϕ(εx) on ∂ω.

We have by (34) V = λ + W with λ ∈ R2 and W = O(1/r). Notice that this
implies W (xε ) = O(ε). We define zε := vε −W

(
x
ε

)
and pzε := qε − 1

εPW
(
x
ε

)
,

where PW is defined by (35) with y = x/ε. Notice that zε satisfies:
−ν∆zε +∇pzε = 0 in Ωε

div zε = 0 in Ωε
zε = Φ−W

(
x
ε

)
on ∂Ω

zε = λ on ∂ωε.

Using the previous lemmas we can bound the terms of this function, and λ can be
bounded thanks to (36). Finally we have that W

(
x
ε

)
satisfies the desired estimate

by Lemma B.3 and we conclude by triangle inequality.

Appendix D. Proof of Lemma 4.2. First, we have the following lemma:

Lemma D.1. Let ε > 0. For ψ ∈ H−1/2(O), Φ ∈ H1/2(∂Ω\O) and λ ∈ R2, let
(vε, qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

(46)


−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε
σ(vε, qε)n = ψ on O

vε = Φ on ∂Ω\O
vε = λ on ∂ωz,ε.

Then there exists a constant c > 0 (independent of ε) and ε1 > 0 such that for all
0 < ε < ε1

‖vε‖1,Ωz,ε ≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + |λ|

)
.

Proof. Let ε > 0 and (vε, qε) ∈ H1(Ωz,ε)×L2(Ωz,ε) be the solution of Problem (46).

Let (V ε, Qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of

(47)


−ν∆V ε +∇Qε = 0 in Ωz,ε

divV ε = 0 in Ωz,ε
σ(V ε, Qε)n = 0 on O

V ε = Φ on ∂Ω\O
V ε = λ on ∂ωz,ε.

Let ṽε and Ṽ ε the respective extensions of vε and V ε to Ω by λ. Then, we have

for all Ψ ∈
{

Ψ ∈ H1(Ωz,ε), div Ψ = 0, Ψ ∂ωz,ε = 0, Ψ ∂Ω\O = 0
}

1

2
ν

∫
Ωz,ε

D(vε − V ε) :D(Ψ) = 〈ψ , Ψ〉O

and then taking Ψ = vε − V ε

1

2
ν
∥∥∥D(ṽε − Ṽ ε)

∥∥∥2

0,Ω
= 〈ψ , vε − V ε〉O .
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Thus, there exists a constant (independent of ε) such that∥∥∥D(ṽε − Ṽ ε)
∥∥∥2

0,Ω
≤ c ‖ψ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω

.

Moreover, since vε − V ε = 0 on ∂Ω\O, Korn’s inequality (see for example [41,
eq. (2.14) page 19]) leads∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

(with a constant c independent of ε). Hence,

‖vε − V ε‖21,Ωz,ε =
∥∥∥ṽε − Ṽ ε

∥∥∥2

1,Ω
≤ c ‖ψ‖−1/2,O

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

≤ c ‖ψ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c ‖ψ‖−1/2,O ‖vε − V ε‖1,Ωz,ε .

Thus,

‖vε − V ε‖1,Ωz,ε ≤ c ‖ψ‖−1/2,O .

Now, let us prove that ‖V ε‖1,Ωz,ε ≤ c
(
‖Φ‖1/2,∂Ω\O + |λ|

)
. For a fixed ε0 > 0,

Problem (47) is well-posed and admits a unique solution (V ε0 , Qε0) ∈ H1(Ωz,ε0)×
L2(Ωz,ε0) and there exists a constant c > 0 such that

‖V ε0‖1,Ωz,ε0 ≤ c
(
‖Φ‖1/2,∂Ω\O + ‖λ‖1/2,∂ωz,ε0

)
.

Notice that, by (A.1) we get that:

‖λ‖1/2,∂ωz,ε0 ∼
1

(ε0(− log ε0))1/2
‖λ‖L2(∂ωz,ε0 ) + [λ]p,∂ωz,ε0

.

The later term is zero, because λ is constant, so we get, by a change of variables
that:

‖λ‖1/2,∂ωz,ε0 ∼
1

(ε0(− log ε0))1/2
‖λ‖L2(∂ωz,ε0 ) =

1

(− log ε0)1/2
‖λ‖L2(∂ω)

= c(ε0, ∂ω)|λ|.

Let 0 < ε1 < ε0 such that Ωz,ε0 ⊂ Ωz,ε for all 0 < ε < ε1. Let Ṽ ε0 the extension
of V ε0 to Ω by λ. The solution V ε of (47) can be considered as the solution of the

following minimization problem: min
V ∈U

{
ν |V |1,Ωz,ε

}
, where

U :=
{
V ∈ H1(Ωz,ε), divV = 0 in Ωz,ε, V = λ on ∂ωz,ε, V = Φ on ∂Ω\O

}
.

Hence, for all 0 < ε < ε1, we have

|V ε|1,Ωz,ε ≤ c
∣∣∣Ṽ ε0

∣∣∣
1,Ωz,ε

= c |V ε0 |1,Ωz,ε0 ≤ c ‖V ε0‖1,Ωz,ε0 ≤ c
(
‖Φ‖1/2,∂Ω\O + |λ|

)
.

Notice that ‖V 0‖1,Ω ≤ c ‖Φ‖1/2,∂Ω\O. Hence, using Poincaré inequality,

‖V ε‖0,Ωz,ε =
∥∥∥Ṽ ε

∥∥∥
0,Ω
≤
∥∥∥Ṽ ε − V0

∥∥∥
0,Ω

+ ‖V 0‖0,Ω ≤ c
∣∣∣Ṽ ε − V0

∣∣∣
1,Ω

+ ‖V 0‖0,Ω

≤ c
∣∣∣Ṽ ε

∣∣∣
1,Ω

+ c ‖V 0‖1,Ω ≤ c |V ε|1,Ωz,ε + c ‖V 0‖1,Ω ≤ c
(
‖Φ‖1/2,∂Ω\O + |λ|

)
.

Hence, we have the announced result.
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Proof of Lemma 4.2. The proof is similar to the one presented in the previous sec-
tion for the Dirichlet system. If ϕ is constant on ∂ωε, the previous lemma gives
the desired result. So, let’s focus on the case where ϕ is not constant. Let V the
bounded solution of −ν∆V +∇PV = 0 in R2 \ ω

divV = 0 in R2 \ ω
V = ϕ(εx) on ∂ω.

We have by (34) V = λ+W with λ ∈ R2 and W = O(1/r), notice that this implies
W (xε ) = O(ε). We define zε := vε −W

(
x
ε

)
and pzε := qε − 1

εPW
(
x
ε

)
, where PW

is defined by (35) with y = x/ε. Notice that the couple (zε, pzε) satisfies:
−ν∆zε +∇pzε = 0 in Ωε

div zε = 0 in Ωε
σ(zε, pzε)n = ψ − 1

εσ
(
W
(
x
ε

)
, PW

(
x
ε

))
n on O

zε = Φ−W
(
x
ε

)
on ∂Ω \O

zε = λ on ∂ωε.

The previous lemma gives the existence of c > 0 independent of ε such that:

‖zε‖1,Ωε ≤ c
(∥∥ψ − 1

εσ
(
W
(
x
ε

)
, PW

(
x
ε

))
n
∥∥
−1/2,O

+
∥∥Φ−W (

x
ε

)∥∥
1/2,∂Ω\O + |λ|

)
≤ c

(
‖ψ‖−1/2,O + 1

ε

∥∥σ (W (
x
ε

)
, PW

(
x
ε

))
n
∥∥
−1/2,O

+ ‖Φ‖1/2,∂Ω\O

+O(ε) + ‖ϕ(εx)‖1/2,∂ω
)
.

Notice that we have, using the same argument as in (20):∥∥∥σ (W (x
ε

)
, PW

(x
ε

))
n
∥∥∥
−1/2,O

≤ c
∥∥∥(∇W )

(x
ε

)∥∥∥
0,Ω0

R

.

But:∥∥∥(∇W )
(x
ε

)∥∥∥
0,Ω0

R

= ε
∥∥∥(∇W (x

ε

))∥∥∥
0,Ω0

R

= ε2 ‖∇W ‖0,Ω0
R/ε
≤ ε4 ‖ϕ(εx)‖1/2,∂ω ,

where the last inequality comes from Lemma B.3. Notice that λ can be bounded
thanks to (36), so we have:

‖zε‖1,Ωε ≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O +O(ε) + ε3 ‖ϕ(εx)‖1/2,∂ω

+‖ϕ(εx)‖1/2,∂ω
)
.

So, finally, for ε small enough, we get:

‖vε‖1,Ωε ≤ ‖zε‖1,Ωε +
∥∥W (

x
ε

)∥∥
1,Ωε

≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εx)‖1/2,∂ω

)
+ c‖ϕ(εx)‖1/2,∂ω

≤ c
(
‖ψ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ‖ϕ(εx)‖1/2,∂ω

)
,

and we conclude.
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[11] V. Bonnaillie-Noël and M. Dambrine, Interactions between moderately close circular inclu-
sions: the Dirichlet-Laplace equation in the plane, Asymptot. Anal., 84(3-4) (2013), 197–227.
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