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Résumé

Cette these porte sur 'optimisation de la forme de structures élastiques soumises a des charge-
ments mécaniques incertains. On a considéré trois approches différentes pour la prise en compte
des incertitudes en optimisation de forme. Dans la premieére approche, on a étudié un probleme
d’optimisation avec une contrainte sur le maximum d’une fonctionnelle critique. Ensuite, on a
examiné le probléme d’optimisation topologique robuste, ot la contrainte porte sur ’espérance
d’une fonctionnelle d’intérét. Enfin, on a abordé le probleme de I'optimisation topologique fi-
able, qui vise a controler la probabilité d’une variable aléatoire de dépasser un seuil donné.
Toutes les contraintes ont été imposées sur des quantités couramment manipulées en mécanique
des structures, telles que la compliance et la contrainte de von Mises. On a adopté la méthode
de variation des frontieres de Hadamard pour dériver ’objectif et les contraintes des problémes
d’optimisation par rapport a la forme, et on a représenté les structures par la méthode des lignes
de niveaux. Les résultats théoriques sont supportés par des simulations numériques en deux et
trois dimensions.

Mots-clés: Optimisation de forme, élasticité linéaire, quantification d’incertitudes, méthode
des lignes de niveau, contrainte de von Mises.

Abstract

The present thesis focuses on the optimization of linear elastic structures subject to uncer-
tain mechanical loads. We studied three different approaches to factor uncertainties in shape
optimization. In the first approach we considered an optimization problem with a constraint
on the maximum of a critical functional. Then, we studied the case of robust topology opti-
mization, where the constraint holds on the expectation of a functional of interest. Finally, we
addressed the problem of reliability-based topology optimization, aiming to control the probabil-
ity of a stochastic quantity not to exceed a given threshold. All constraints have been imposed
on quantities of proven interest in structural mechanics, as the compliance and the von Mises
stress. We adopted Hadamard’s boundary variation method to differentiate the objective and
the constraints of the optimization problems with respect to the shape, and we represented the
structures by the level-set method. The theoretical results are supported by numerical simula-
tions in two and three dimensions.

Keywords: Shape optimization, linear elasticity, uncertainty quantification, level-set method,
von Mises stress.
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Introduction générale

Généralités en optimisation de structures

Les progres technologiques de ces dernieres années ont entrainé une augmentation de la puis-
sance de calcul, et ont permis le développement de techniques avancées pour la conception
de structures complexes. Les techniques d’optimisation de forme et topologique ont été ap-
pliquées dans plusieurs branches de l'ingénierie, du génie civil [237, 257], a I'industrie aérospa-
tiale [I86, 183, 199], au secteur de l'automobile [227, 204, 175], aux échangeurs de chaleur
[264], 259, 238, 243, [4], & la micro-électronique et photonique [146] 109, [163], & la biomécanique
[161), 144} 127] et au-dela. Les progres de la fabrication additive et des fraiseuses & commande
numérique ont permis la réalisation de structures complexes, et ont favorisé le développement
de méthodes d’optimisation de forme et topologique [260, 243], [I5]. Consultez [207] pour une
liste exhaustive des différentes applications de I'optimisation de forme dans différents domaines
de l'ingénierie. Les approches a ’optimisation de structures sont généralement divisées en trois
catégories principales [238, [177] :

e optimisation paramétrique, ou la structure d’intérét est représentée par un nombre
réduit de variables ;

e optimisation de forme, ou le parametre d’optimisation est la frontiére de la structure
elle-méme ;

o optimisation topologique, ou la variable d’optimisation est la distribution du matériau
dans un domaine de référence, sans a priori sur la topologie de la structure optimale.

Méthodes de densité et homogénéisation

Les méthodes de densité sont une vaste classe de techniques d’optimisation topologique, dont
l'origine remonte a la méthode SIMP (Solid Isotropic Material with Penalization ou matériau
solide isotrope avec pénalisation) congue par Bendsge et Sigmund [47]. Cette méthode considere
un domaine de calcul D dans lequel est défini une densité p : D — [0,1]. Les propriétés des
matériaux en chaque point du domaine sont une interpolation des propriétés de deux matériaux
différents (comme une matrice solide et un fluide, ou deux matériaux élastiques) en fonction de
p. Afin d’assurer que le probleme d’optimisation est bien posé dans le cas de I'optimisation de
structures élastiques, un matériau ersatz suffisamment léger remplace 1’espace vide entourant
le domaine. Le parametre d’optimisation est le parameétre de densité p lui-méme de sorte que,
apres la convergence de l'algorithme d’optimisation, la distribution optimale des matériaux dans
le domaine de calcul est identifiée par les régions ou p est proche de 0 ou de 1. La méthode
SIMP a été largement étudiée et adaptée a 'optimisation des structures élastiques [45], et aux



Introduction générale

structures couplées a des problémes de dynamique des fluides [53]. En outre, cette méthode a
été introduite depuis longtemps dans les logiciels commerciaux d’éléments finis tels que ANSYS,
Optistruct et ABAQUS [262] et dans des logiciels de dynamique des fluides [195].

La convergence vers une solution avec une distinction nette entre les deux phases dépend
de la nature du probleme et des parametres de I'algorithme d’optimisation. Par conséquent, de
larges zones grises peuvent exister méme a la fin du processus d’optimisation. L’application de
contraintes sur ’épaisseur de la structure est rendue particulierement difficile par I’absence d’une
frontiere nette. Des contraintes relatives a la topologie du domaine ou a la fabricabilité présen-
tent des difficultés similaires. Comme affirmé dans [167], de tels objectifs nécessitent ’application
d’algorithmes de reconnaissance de surface afin d’identifier les différents composants des struc-
tures et de quantifier les contraintes. Une fois la frontiére clairement identifiée, les contraintes
peuvent étre appliquées a posteriori, en dehors de I'algorithme d’optimisation topologique.

Un exemple particulier d’optimisation de structures est 'optimisation topographique, con-
cernant 'optimisation d’une plaque mince en variant son épaisseur en chaque point. La solution
des problemes d’optimisation topographique approche une méthode de densité ou le parameétre
p représente ’épaisseur de la membrane plutét que les propriétés du matériau en chaque point.
Des problemes d’optimisation topographique peuvent émerger de I'application de techniques de
réduction de modeles a des probléemes plus complexes, comme dans [246], 239).

Une approche différente a 'optimisation de forme consiste en 'optimisation évolutive de
structures (Fvolutionary Structural Optimization, ou ESO) développée par Xie et Steven [2506]
et étendue & la méthode d’optimisation évolutive bidirectionnelle de structures (Bidirectional
Evolutionary Structural Optimization, ou BESO) avec la collaboration de Querin en 1998 [203].
La technique BESO considére un maillage fixe englobant I’ensemble du domaine de calcul, et
ot chaque élément est soit vide, soit rempli par le matériau composant la structure. A chaque
étape de l'optimisation, un probléme aux éléments finis est résolu dans la région occupée par le
matériau, la sensibilité nodale de la fonction objectif par rapport a la forme est calculée, et une
partie du matériau est ajoutée ou retirée de la structure en conséquence. Voir [135] 257, 241]
pour des applications numériques, et [140] pour des améliorations apportées a la méthode BESO
originale, notamment en ce qui concerne la dépendance par rapport au maillage.

Les progres technologiques concernant les matériaux composites et I'impression 3D ont stim-
ulé l'intérét pour les structures poreuses, et ont été a l'origine de techniques d’optimisation
topologique adaptées a de telles conceptions. A titre d’exemple, nous citons la classe des méth-
odes d’homogénéisation. Introduites entre les années 1970 et 1980 par Tartar et Murat [242), [187],
Gibiansky, Lurie et Cherkaev [172] [123| 124], et Kohn and Strang [153], ces méthodes ont montré
leur efficacité dans le cadre de 'optimisation de structures depuis la publication de l'article [44]
par Bendsge et Kikuchi en 1988. Au lieu de modéliser directement la structure au niveau micro-
scopique, ce qui peut étre extrémement cotiteux du point de vue computationnel, les propriétés
mécaniques de la structure sont résumées par un seul tenseur dépendant d’un ou de plusieurs
parametres, et la distribution de ces parameétres dans ’espace est optimisée. Les changements
de parametres dans l'espace représentent des variations de la structure du matériau poreux,
comme la direction des fibres d’'un matériau anisotrope ou la densité de chaque cellule du lat-
tice. Voir [B, 197, [122] et les références qui y figurent pour plus d’informations sur les techniques
d’homogénéisation dans le cadre de I'optimisation topologique. Des courbes paramétrées telles
que les Non-Uniform Rational Basis Splines (NURBS) peuvent remplacer 'approche de densité
pour représenter le champ variable des parameétres dans la structure [I85] 48]. Le probléme
d’homogénéisation inverse, qui consiste & reconstruire une structure poreuse conforme & une
distribution donnée des propriétés des matériaux dans un domaine, peut également se traiter a
l'aide de techniques d’optimisation de forme [261].
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Optimisation de forme par la méthode de Hadamard

Dans la présente these, afin de traiter des problemes d’optimisation de structures, on adopte
une approche reposant sur la notion de dérivée par rapport a la forme telle qu’introduite par
Jacques Hadamard dans son mémoire [131] et présentée en détail dans [6, 100, I3§]. Soit §2 un
domaine dans R? avec une frontiere Lipschitzienne pour d = 2 ou 3, ®(-) une fonctionnelle &
valeurs réelles définie sur un ensemble approprié de domaines admissibles Saqm, et @ un champ de
vecteurs continus et Lipschitziens. La dérivée de forme au sens de Hadamard décrit la sensibilité
de ®(Q) par rapport & de petites perturbations du domaine €2, et est définie comme la dérivée au
sens de Fréchet de la fonction 8 — ®((I + 0)2), ou I désigne l'opérateur identité. Telle dérivée
est utilisée pour calculer un champ de déformation approprié pour optimiser la structure. Plus
de détails sur la définition et le calcul des dérivées de forme sont fournis dans la section [[.2]

Dans les premieres applications de la méthode de Hadamard a 'optimisation de forme, les
structures étaient modifiées en déplacant les noeuds du maillage dans la direction indiquée par
la dérivée de forme [198, [I84]. Un probléeme majeur de cette approche est la dégradation rapide
du maillage apreés seulement quelques étapes de l'algorithme d’optimisation [41]. Parmi les
solutions proposées pour ce probléme on trouve des opérations de remaillage fréquentes [30],
ainsi que l'utilisation de techniques de remaillage adaptées au probléeme d’optimisation, comme
le Deformable Simplician Complex [182) [72 [71].

Une autre approche adaptée au contexte de 'optimisation de forme est la méthode des lignes
de niveauz. Cette technique a été introduite pour la premiere fois par Osher et Sethian en 1988
[193] pour représenter une interface dans un probléme de dynamique des fluides. Cependant,
depuis que Haber et Bendsge ont reconnu son potentiel en 1996 [130], la méthode des lignes de
niveaux est devenue 1'une des approches les plus populaires pour les applications d’optimisation
de forme (voir [247] pour plus de détails et d’exemples). Afin de représenter une structure
Q C R4, la méthode des lignes de niveaux considére un domaine de calcul D C R plus grand
que 2, et associe & la structure une fonction continue ¢q : D — R qui est négative a l'intérieur
de la structure, positive a 'extérieur, et égale & zéro sur sa frontiére. Le transport de la fonction
de niveau par un champ vectoriel donné peut se calculer numériquement a 1’aide d’une équation
d’advection appropriée sur un maillage couvrant ’ensemble du domaine de calcul D.

Si la fonction ¢q est définie sur un maillage fixe Tp, certains des éléments du maillage
sont traversés par l'isovaleur 0. Une approche simple consiste a modifier les propriétés des
matériaux dans chaque élément du maillage en fonction de la valeur locale de la fonction-lignes
de niveaux [19]. Cette technique est simple & mettre en ceuvre et donne des résultats fiables,
comme le montrent les simulations numériques de la section Cependant, elle souffre de
deux inconvénients importants. Tout d’abord, il est souvent nécessaire de remplacer 1’espace
extérieur a la structure par un matériau ersatz léger, imitant ’espace vide mais qui garantit
que les problemes différentiels définis sur D sont bien posés. L’erreur introduite par le matériau
ersatz est étudiée en [84]. Deuxiemement, si la ligne de niveau 0 de ¢q traverse des éléments du
maillage, I'interface entre I'intérieur et 'extérieur de la structure n’est pas clairement définie.
Certaines techniques abordant ce probléme sont Iapproche de l'interface immergée [254) 230],
l'approche XFEM [107, 249] et CutFEM [59, 250], ainsi que l'algorithme LEVITY [77]. Une
discussion plus détaillée de ces méthodes est présentée dans la section Pour la plupart
des simulations de cette these, nous adoptons 'approche proposée par Dapogny et Feppon en
[91], qui joint la méthode des lignes de niveaux avec des techniques d’adaptation de maillage de
sorte que, a chaque étape de I'optimisation, la structure €2 est explicitement représentée par un
sous-maillage de Tp.

Une définition précise des frontieres de la structure par la fonction ¢q permet de traiter

3
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plus facilement les contraintes de fabricabilité et d’accessibilité [167]. Différentes méthodes
d’application des contraintes d’épaisseur minimale ou maximale ont été proposées dans la lit-
térature, reposant soit sur l'utilisation de fonctionnelles d’énergie [65], soit sur les propriétés
de la fonction distance signée [I81], [115]. Les contraintes d’accessibilité, en particulier dans le
contexte de la fabrication additive, ont également été étudiées dans le cadre d’une approche par
lignes de niveaux [9, 7 [8].

Un inconvénient important de la dérivée de forme au sens de Hadamard est qu’elle ne prend
pas en compte les changements de topologie de la forme au cours de 'optimisation. Sila structure
a optimiser est représentée par un maillage déformable, la modification de la topologie est
impossible, car elle nécessiterait des changements dans la matrice de connectivité. Cependant,
dans le cadre de la méthode des lignes de niveaux, la nature discréte de I'étape d’advection peut
entrainer des modifications topologiques de la forme, comme indiqué dans [I112] Section 1.4.2].
Typiquement, une paroi fine peut se briser ou deux parties peuvent fusionner. Comme la dérivée
de forme au sens de Hadamard n’est définie que pour de petites déformations qui n’entrainent
pas de changements topologiques, on peut observer des discontinuités dans les fonctions objectif
ou dans les contraintes a chaque fois qu'un changement de topologie se produit.

Un autre inconvénient de la méthode des lignes de niveaux est le fait que, contrairement a
la méthode de la densité, elle ne permet pas 'apparition de nouvelles cavités a l'intérieur du
matériau. Ce probleme a été résolu par la définition de la dérivée topologique, qui mesure la
sensibilité d’une fonction de forme par rapport a la création de trous dans la structure [233), [191].
Les dérivés topologiques et de forme ont été utilisées avec la méthode des lignes de niveaux afin
de diminuer la dépendance du résultat par rapport & la forme initiale [19] 211, [91].

Généralités sur les incertitudes en optimisation de forme

Les avancements dans les techniques d’optimisation de forme et topologique ont permis de
développer des structures tres performantes dans plusieurs domaines industriels. Cependant, la
performance de la structure dans un cas de référence n’est pas le seul aspect a prendre en compte,
car son comportement peut étre perturbé par un certain nombre de facteurs différents [10]. Parmi
les raisons, on compte la déviation de la structure par rapport & sa conception originale en raison
d’imperfections dans le processus de fabrication ou dans la qualité du matériau. Deuxiémement,
I'usure de la structure dans le temps peut détériorer son matériau et dégrader ses performances.
Enfin, les charges appliquées a la structure et les conditions d’utilisation peuvent fluctuer dans
le temps ou étre connues avec un certain degré d’incertitude.

La présente these aborde le probleme récurrent dans le secteur aérospatial de la conception
de structures aussi légéres que possible, mais conformes aux exigences rigoureuses de robustesse
et de fiabilité de l'industrie. En particulier, un moteur a turbine a gaz est caractérisé par
de nombreux composants interconnectés entre eux, et soumis a des sollicitations mécaniques
intenses et variables. Afin de garantir la tenue du moteur dans une vaste gamme de conditions
envisageables au cours du vol, la prise en compte des parameétres incertains lors de la conception
des composants de la turbine est fondamentale. C’est dans ce contexte que Safran Helicopter
Engines a manifesté son intérét pour I'optimisation de strucures sous incertitudes, avec I’'objectif
de développer des techniques d’optimisation de forme adaptées aux circonstances particuliéres
d’un moteur, et de les appliquer a certains composants critiques.

Le probleme de la prise en compte des perturbations dans 1’optimisation de structures est
apparu dans de nombreux domaines de l'ingénierie. A titre d’exemple, on peut citer [196], 220,
156] 139] pour des applications & I'ingénierie aérospatiale, [I161] pour une étude dans le contexte
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biomédical, et [201), 163] pour une application & la micro-électronique et a la photonique. Le
sujet de la quantification des incertitudes et de 'optimisation de la forme d’un domaine soumis
a des perturbations géométriques aléatoires dépend strictement de la méthode choisie pour
le représenter. Les premieres approches reposent sur la paramétrisation de la structure par
un nombre fini de variables. Dans [196], une approche de Krigeage est utilisée pour évaluer
la réponse d’'une aile a de petites perturbations de sa géométrie. Dans [63, 222, BT, 11], le
domaine incertain est représenté par la perturbation d’une forme de référence par un champ
aléatoire Lipschitzien. Une approche différente basée sur la méthode de la densité est proposée
dans [162], ou lincertitude de la forme est modélisée par la présence de parametres aléatoires
dans la régularisation de la fonction de densité. Les techniques d’optimisation topologique en
présence d’incertitudes sur la structure se sont révélées utiles dans le contexte des probléemes
d’identification de formes et d’obstacles [82, [83].

La présence d’incertitudes dans les propriétés du matériau ou dans les charges appliquées a
été étudiée par plusieurs auteurs, et de nombreuses perspectives différentes ont été proposées.
Une possibilité consiste a supposer que la distribution de probabilité de la perturbation est
connue ou qu’elle peut étre déduite de mesures expérimentales. Dans cette catégorie d’approches,
on trouve les techniques d’ optimisation topologique robuste (Robust Topology Optimization -
RTO) et d’optimisation topologique fiable (Reliability-Based Topology Optimization - RBTO)
[121]. L’approche RTO évalue 'espérance et la variance des fonctions d’intérét. Les méthodes
RBTO consistent a estimer la probabilité qu'une fonction donnée dépasse un seuil donné, noté
probabilité de défaillance [10], [11], et nécessitent une connaissance précise de la distribution des
incertitudes. Plus de détails et de références sur les problemes RTO et RBTO sont présentés
dans les chapitres [4] et [5| de cette theése. Les hypotheéses sur la distribution des incertitudes
peuvent étre inexactes, et une approche possible a cette problématique est présentée dans [93].

Une autre classe de probléemes considere que la perturbation appartient a un ensemble borné,
et se préoccupe d’optimiser la structure par rapport au scénario le plus défavorable. La fonction
dont la valeur doit étre contrélée peut apparaitre soit dans ’objectif, soit dans la contrainte
du probleme d’optimisation, et les approches aux deux situations sont différentes. Le cas ou la
fonction incertaine apparait comme une contrainte est le principal intérét du chapitre (3] Comme
indiqué dans [43], 'optimisation du pire cas est préférable aux problémes d’optimisation robuste
ou fiable lorsque les données sont imprécises ou si leur distribution de probabilité est inconnue,
si le respect strict de la contrainte en toutes circonstances est d’importance primordiale, ou si
la solution optimale est particulierement difficile a fabriquer.

Les différentes approches a I’inclusion des incertitudes dans les conditions externes ou dans les
propriétés du matériau présentent des inconvénients et des avantages. D’une part, I’'optimisation
sous contraintes du pire cas ne nécessite aucune hypothese sur la distribution des incertitudes.
D’autre part, elle peut aboutir & une forme trop pessimiste, avec des performances médiocres
dans la grande majorité des situations afin de couvrir un ensemble invraisemblable de circon-
stances. Pour la plupart des applications mécaniques, la forme de la structure et les propriétés
des matériaux sont connues avec précision, mais les charges appliquées sont sujettes a une plus
grande variabilité. Par conséquent, la présente thése se concentrera sur le cas de conditions
externes incertaines, sans aucune hypothése préalable sur la taille des perturbations.

Propagation des incertitudes pour I’élasticité linéaire

L’objectif principal de cette theése est d’analyser les problemes d’optimisation de forme en élas-
ticité linéaire, lorsque les chargements mécaniques présentent des incertitudes dans la direction
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et l'intensité. Plus précisément, on considere une structure mécanique composée d’un matériau
élastique homogene et isotrope. Soit S,qm la classe de toutes les formes admissibles que la struc-
ture peut prendre, qu’on suppose étre des domaines ouverts Lipschitziens dans R?. Pour toute
Q € S.am, Oon suppose que sa frontiere 02 se divise en trois parties avec une mesure stricte-
ment positive : I'p, ou la structure est fixée, I'y ou les charges mécaniques sont appliquées,
et I'g représentant la surface libre. Le déplacement élastique ug induit par les chargements
mécaniques peut se calculer a 'aide des équations de I’élasticité linéaire. Dans ce cadre, soit f
la densité de force agissant sur ’ensemble du volume, g le chargement surfacique appliqué a la
portion I'y de la frontiere de la structure, ug le champ de déplacement, et o (ug) le tenseur des
contraintes. Des conditions de Dirichlet homogenes sont appliquées sur I'p, tandis que I'g et I'y
présentent des conditions de Neumann homogenes et non homogenes respectivement.

L’objectif des problemes considérés dans cette theése est de trouver la structure admissible
avec un volume minimal, qui satisfait un certain critére sous la forme H(ug,Q) < 7, ou 7 est
un seuil approprié. Le probléeme d’optimisation peut étre formulé ainsi

Trouver la forme admissible Q2 € S,qm
qui minimise le volume Vol(2)

sous la contrainte H(ugq, ) <7,

ou le déplacement ug

satisfait les équations de 1’élasticité linéaire

—div(o (ug)) = f dans Q,

oclug)n = g sur I'y,
o(ug)n = 0 surTy,
ug = 0 sur I'p.

Afin d’introduire les incertitudes, on considére l'espace probabilisé (O, A, P), ou I'espace des
évenements est désigné par O, A C 29 est une tribu sur O, et P une mesure de probabilité.
On suppose que le chargement mécanique g est incertain, de sorte qu’il puisse se modéliser
comme une variable aléatoire. Ainsi, les incertitudes se propagent au déplacement ug et a la
contrainte H(ug(w),?). Afin de résoudre le probleme d’optimisation et d’obtenir une solution
déterministe, il est nécessaire de remplacer la contrainte H (ug, §2) par une quantité déterministe
F [H(ug,Q)] € R. En tenant compte des incertitudes, le probléeme d’optimisation de forme ci-
dessus peut se formuler comme suit

Trouver la forme admissible Q2 € Syqm
qui minimise le volume Vol(2)

sous la contrainte F [H(ug, Q)] < 7,
ou le déplacement ug(w)

satisfait les équations de 1’élasticité linéaire

—div (o (ug(w))) = f dans €,
o(upw))n = gw) surly,
o(ugw))n = 0 sur [,

ugp(w) = 0 sur I'p,

pour presque tout évenement w € O.



Les différentes approches a I'optimisation de forme sous incertitudes peuvent étre distinguées
selon le choix de 'opérateur F [-]. Pour 'approche du pire cas, la contrainte déterministe peut
s’écrire sous la forme F [H (ug, Q)] = esssup,cp H(uq(w), ) < 7. Dans le cas des problemes
d’optimisation robuste, I'opérateur F [-] est une combinaison des opérateurs d’espérance et de
variance. Enfin, pour les problémes d’optimisation fiable, F [H (ugq, ()] est la probabilité que
H(ugq, ) dépasse une certaine tolérance, et l'inégalité F [H(ugq, )] < 77 peut s’interpréter
comme une contrainte sur la probabilité de défaillance.

Résumé de la these par chapitre

Cette thése se divise en deux parties principales. Dans la partie [I[] on introduit les notions
principales d’optimisation de forme pour des structures élastiques, et on étudie des probléemes
d’optimisation dans un cadre déterministe. La partie [[] présente différentes approches pour
prendre en compte les incertitudes sur les chargements mécaniques appliqués a la structure. La
partie I est divisée en deux chapitres, tandis que la partie [[ se compose de trois chapitres, un
pour chaque approche.

Chapitre 1: methode de Hadamard pour ’optimisation de forme

Dans ce chapitre introductif, on présente les notions principales relatives a ’optimisation de
forme utilisées dans cette these.

Dans la section 1.1, on commence par rappeler le cadre général des problémes d’optimisation
sous contraintes. Ensuite, on se concentre sur des problemes d’optimisation contraints par des
Equations aux Dérivées Partielles (EDP), et on présente la notion d’algorithmes d’optimisation
basés sur le gradient. Une attention particuliere est accordée au calcul et a 1’étude de 1’état
adjoint. La section se termine par quelques rappels et notations sur les espaces de fonctions.

La section décrit la méthode de dérivation de fonctionnelles de forme telle qu’introduite
par Hadamard en 1908 [I31], en suivant les notations de [6l, 100, 138]. Apres avoir rappelé les
notions de dérivées de Fréchet et de Gateaux, on introduit la notion de dérivée de forme, on
énonce le théoreme de structure de Hadamard (théoreme , et on montre quelques résultats
sur les dérivées des fonctionnelles de volume et de surface. Ensuite, on présente deux méthodes
pour calculer la dérivée de forme d’une fonctionnelle de volume qui dépend de la solution d’une
EDP. Dans la section[I.2.2] la dérivée de forme est obtenue par le calcul de la dérivée lagrangienne
de la solution de 'EDP, et par la déduction de 1'équation adjointe. Dans la section [I.2:3] on
obtient la méme expression par la méthode de dérivation rapide de Céa [61]. Plus de détails sur
le calcul de certaines expressions se trouvent dans I’annexe [A]

Enfin, dans la section[I.3] on discute des méthodes numériques pour les simulations effectuées
dans cette these, ainsi que d’alternatives possibles. Tout d’abord, on présente la méthode des
lignes de niveaux et la fonction de distance signée pour la représentation des domaines. Ensuite,
on introduit la notion de maillage adaptatif et la méthode du matériau ersatz pour résoudre des
problémes aux limites pour les domaines encodés par les fonctions-lignes de niveaux. Dans la
section on présente I'algorithme d’optimisation null space tel qu’il a été décrit par Feppon,
Allaire et Dapogny en [I14]. En conclusion, on résume les différentes étapes de l’algorithme
d’optimisation de forme utilisé dans cette these.
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Chapitre 2: Un probleme élasto-thermique déterministe

Le deuxiéme chapitre de la partie [I] est consacré a l'optimisation de structures mécaniques
élastiques dans le cas déterministe. Dans la section [2.1.1 on commence par introduire les
équations de I'élasticité linéaire, les tenseurs des déformations et des contraintes, les propriétés
de symétrie du tenseur d’élasticité de quatrieme ordre, et on exprime les équations de 1’élasticité
linéaire pour des matériaux homogenes isotropes. Ensuite, on présente deux fonctions de forme
particuliérement intéressantes en mécanique des structures : la compliance (le travail des forces
externes) et la contrainte de von Mises.

Dans la section 2.2 on étudie I'influence des effets thermiques pour 'optimisation d’une struc-
ture élastique. On commence par présenter les équations constitutives d’un matériau élastique
soumis a une dilatation thermique. Ce probleme est particulierement intéressant dans le con-
texte de la fabrication additive (voir Allaire et Jakabd¢in [15]), ainsi que pour les applications
multiphysiques [112].

On suppose que la réponse mécanique est beaucoup plus rapide que les changements dans
le champ de température. Ainsi, on utilise ’équation de diffusion dépendante du temps pour
calculer la distribution thermique & chaque instant, tandis que le déplacement est modélisé par
les équations quasi-statiques de 1’élasticité linéaire. Dans le reste de la section, on formule un
probléme d’optimisation de forme pour une structure élastique soumise & un champ thermique
variable dans le temps, avec I’objectif de minimiser son volume sous une contrainte sur la compli-
ance mécanique. La contrainte est composée de deux termes : le premier consiste en la moyenne
temporelle de la compliance pour la durée de la simulation. La seconde composante, qui n’est
pas examinée aussi souvent que la premiere pour des problémes d’optimisation de forme dépen-
dant du temps, ne prend en compte que 1’état final de la structure. La dérivée de forme d’une
telle fonctionnelle est calculée dans la section [2.2.3

Dans la section on présente les résultats de quelques simulations numériques. On com-
mence par la minimisation du volume d’un cantilever 3D avec des contraintes sur la compliance
et sur la contrainte de von Mises, et on termine par quelques résultats sur le probléeme thermo-
élastique. Les résultats de la section[2.2]ont été obtenu en collaboration avec Viacheslav Karnaev,
doctorant a I'université de Bale. L’étude du probleme thermo-élastique fait partie d’un travail
en cours sur 'optimisation de forme dans un champ thermique incertain et variable dans le
temps, et fera I'objet d’une publication.

Chapitre 3: Optimisation du pire cas

Ce premier chapitre de la partie[[I| présente deux méthodes différentes pour traiter le cas ot 'une
des contraintes du probleme d’optimisation concerne la valeur maximale qu'une fonction donnée
peut prendre. Dans les deux cas, on suppose que les charges incertaines peuvent se paramétrer
par un nombre fini de variables appartenant & un sous-ensemble borné et convexe G d’un espace
de Banach approprié.

La premiére méthode, détaillée dans la section peut s’appliquer lorsque la fonction
G 3 g — H(ugg, ) qui associe les parametres décrivant les charges incertaines a la valeur de
la contrainte est une fonction convexe. La stratégie consiste a approcher ’ensemble G par un
polyedre convexe Gy avec un nombre fini de sommets V. Grace a la convexité de la fonction g
H(ugq g, ), la valeur maximale de la contrainte est atteinte dans I'un des sommets de Gn. Ainsi,
le probleme d’optimisation de forme peut se reformuler comme un probleme équivalent avec a
N contraintes, chacune relative a un différent cas de chargement. Un résultat de convergence
pour la solution du probléme approximé vers la solution de 'original est fourni dans la section
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Cette méthode justifie 'approche des ingénieurs, qui consiste en concevoir des structures
capables de résister a un nombre limité de cas de chargements représentatifs.

Dans la section [3.3] on propose une méthode alternative. On introduit la notion de sous-
différentiel au sens de Clarke, on I'adapte aux fonctions définies sur des formes, et on fournit
une condition suffisante pour son existence sous des conditions de régularité de la fonctionnelle
et de I'ensemble G. Le coeur de la méthode proposée consiste en I'identification d’un élément du
sous-différentiel a chaque étape de I'algorithme d’optimisation, et le calcul du gradient de forme
est fait dans la direction correspondante. On décrit dans les détails la mise en ceuvre numérique
de l'approche sous-différentielle dans la section [3.3.3]

En conclusion, la section [3.4] présente les résultats de quelques simulations numériques, ot on
vise & minimiser le volume de deux structures différentes sous des contraintes sur la compliance
ou sur la norme LS de la contrainte de von Mises. L’approximation polyédrique et la méthode de
sous-différentiel ont été utilisées pour enforcer la contrainte. Les résultats numériques valident
les deux approches, et illustrent la convergence de la solution de la méthode d’approximation
polyédrique vers la solution exacte lorsque Gy s’approche de G. De plus, les simulations montrent
que 'approche basée sur le sous-différentiel est généralement plus rapide que I’approximation
polyédrique de I'’ensemble G, mais qu’elle peut étre perturbée par des oscillations si la struc-
ture a optimiser et ’ensemble des chargements admissibles sont charactérisés par de multiples
symétries. Un article a ce sujet est en cours de rédaction.

Chapitre 4: Optimisation de forme robuste d’une fonctionnelle polynomiale

Plusieurs approches a 'optimisation de forme concernant ’espérance ou la variance d’une fonc-
tionnelle de forme ont été proposées au cours de ces derniéres années [106] 11, 211) [80]. En
particulier, Dambrine, Dapogny et Harbrecht ont prouvé en [80] que la valeur de l'espérance
d’une fonctionnelle quadratique ne dépend que des deux premiers moments stochastiques des
variables aléatoires décrivant les charges incertaines. Par conséquent, le calcul de I’espérance et
de sa dérivée par rapport a la forme ne demande pas d’utiliser des méthodes d’échantillonnage,
qui peuvent étre cotliteux du point de vue computationnel.

L’objectif principal de ce chapitre est I'extension de I’approche de [80] aux fonctionnelles
m~multilinéaires. Le cadre du probleme est décrit dans la section tandis que les principaux
résultats théoriques sont présentés dans la section [£:3] En particulier, on étend la définition
de Popérateur de corrélation de maniére similaire a [226] et, dans le contexte de 1'élasticité
linéaire, on utilise une approche tensorielle pour montrer que I'espérance d’une fonctionnelle m-
multilinéaire ne dépend que des m premiers moments stochastiques des chargements aléatoires.

Dans les deux sections suivantes on montre différentes applications de la méthode, avec
quelques résultats numériques. Dans la section [4.4] on aborde le probleme de la contrainte de la
norme L de la contrainte de von Mises. Comme la norme L ne peut pas étre différentiée, on
peut 'approcher par la norme L™ pour m suffisamment grand, qui peut s’écrire en termes d’une
fonctionnelle multilinéaire de m. Comme simulation numérique, on considere la minimisation
de la masse d’une structure cylindrique 3D soumise & des forces de cisaillement aléatoires sur sa
face supérieure, avec une borne imposée sur la norme L8 de la contrainte de von Mises. Dans la
section on exprime la variance d’une fonctionnelle quadratique en termes d’une fonctionnelle
multilinéaire de degré 4. Ensuite, on adapte un exemple 2D de [80] pour montrer I'effet d’une
contrainte sur I’espérance et la variance de la compliance.

Les résultats principaux de ce chapitre ont été soumis sous la forme d’un article intitulé
Shape Optimization of Polynomial Functionals under Uncertainties on the Right-Hand Side of
the State Fquation, coécrit avec Fabien Caubet, Marc Dambrine et Jérome Maynadier.
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Chapitre 5: Optimisation de la probabilité de dépassement d’un seuil

Ce dernier chapitre est consacré aux problemes d’optimisation fiable pour des fonctions quadra-
tiques. L’intérét des techniques RBTO se trouve dans la possibilité de concevoir des structures
conformes aux contraintes relatives a leur probabilité de défaillance [34, [I80}, [I51], [76, [1T].

Soit g un chargement mécanique aléatoire décrit par un vecteur aléatoire, ug g le déplace-
ment élastique associé, et (u,v) — Q(u,v) € R une fonctionnelle quadratique continue du
déplacement. La fonctionnelle dépend de la forme de la structure (on peut prendre comme ex-
emples la compliance mécanique ou la norme L? de la contrainte de von Mises). Soit 7 un seuil,
et @ (-) la fonctionnelle de forme telle que

®(Q2) =P[Q(uag, ung) > 7,

oll ug g est la solution (incertaine) de I’équation de ’élasticité linéaire. Le calcul de la valeur et de
la dérivée de forme de ® (€2) est détaillée dans les sections et et repose sur l'intégration
de densité de probabilité sur le volume et sur la surface de ’ellipsoide défini par I'inégalité
Qugg ung) < 7.

Dans la section [5.4] on présente une technique différente pour évaluer la probabilité de
défaillance @ (€2) et sa dérivée lorsque la charge externe suit une distribution gaussienne. Cette
deuxieme méthode repose sur la décomposition en série de la fonction de répartition d’une
distribution chi-carré non centrale généralisée, comme montré par Ruben en 1962 [214].

Dans la section [5.5] on présente les détails des algorithmes utilisés pour effectuer les simu-
lations numériques de ce chapitre. Afin de tester la méthode proposée dans la section on a
considéré des problémes ou les incertitudes sont modélisées par des gaussiennes centrées, et on a
appliqué les formules de quadrature de l’annexe [C] afin d’éviter le calcul numérique d’intégrales
en grandes dimensions. Les deux méthodes ont été testées pour I'optimisation de deux struc-
tures élastiques, avec I'objectif de minimiser leur volume sous des contraintes sur la probabilité
pour la compliance de dépasser un seuil. Les résultats sont présentés dans la section Le
calcul des coefficients dans 'expression de la dérivée de forme est presque instantané, donc la
résolution de ces problemes de type RBTO prend a peu pres le méme temps que la résolution
d’un probleme d’optimisation de forme déterministe.

L’essentiel de ce chapitre a fait 'objet d’un article soumis sous le titre Shape optimization
under constraints on the probability of a quadratic functional to exceed a given threshold, écrit
conjointement avec Marc Dambrine, Helmut Harbrecht et Jérome Maynadier.
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Generalities on structural optimization

The technological advancements of the recent years have resulted in an increase in computational
power and have allowed for the development of advanced techniques for the design of complex
structures. Shape and topology optimization techniques have been applied in several branches of
engineering, ranging from civil engineering [237, 257], to the aerospace industry [186] 183, [199],
automotive components [227, 204} [175], heat exchangers [264] [259] 238, 243 4], microelectronics
and photonics [146, 109, 163], biomechanics [I61], 144, 127] and beyond. The advancements in
additive manufacturing and Computer Numerical Control (CNC) milling machines have made
possible the realization of elaborate structures and have driven further the development of shape
and topology optimization methods [260}, 243, [I5]. Consult [207] for a comprehensive review of
the applications of shape optimization in different fields of engineering.

The numerous approaches to structure optimization are usually divided in three main cate-
gories [238|, [177]:

e parametric optimization, where the structure of interest is represented by a small
number of variables;

e shape optimization, for which the parameters of the optimization are the boundary of
the structure itself;

e topology optimization, where the parameter of optimization is the distribution of ma-
terial within a reference domain, with few preconceptions on the topology of the optimal
structure.

Density and homogenization methods

Density methods are a wide class of topology optimization techniques, tracing their origin to
the seminal paper on the Solid Isotropic Material with Penalization (SIMP) technique devised
by Bendsge and Sigmund [47]. Such method considers a computational domain D on which is
defined a density field p : D — [0, 1]. The material properties in each point of the domain are
supposed to be an interpolation of the properties of two different materials (like a solid matrix
and a fluid, or two elastic materials) depending on p. In order to ensure the well-posedness of
the optimization problem in the case of the optimization of elastic structures, a suitably light
ersatz material replaces the empty space surrounding the domain. The optimization parameter
is the density parameter p itself so that, after the convergence of the optimization algorithm, the
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optimal distribution of the materials in the computational domain is identified by the regions
where p is close to 0 or to 1. The SIMP method has been widely studied and adapted to the
optimization of elastic structures [45], and to structures coupled to fluid problems [53]. Moreover,
it has long been introduced in commercial Finite Element software as ANSYS, Optistruct and
ABAQUS [262] and Computational Fluid Dynamics software [195].

The convergence towards a solution having a sharp distinction between the two phases de-
pends on the nature of the problem and on the parameters of the optimization algorithm [I78§].
Therefore, wide grey regions might exists even at the end of the optimization. The enforcement
of constraints on the thickness of the structure is made particularly challenging by the absence
of a sharp boundary. The same can be said for constraints on the topology of the domain or
manufacturability. As stated in the review paper [167], such objectives require the use of suitable
surface recognition algorithms in order to identify the different components of the structures and
quantify the constraints. Once the boundary has been clearly identified, the constraints can be
enforced a posteriori, outside the topology optimization algorithm.

A particular example of structure optimization is topography optimization, where the shape
to be optimized is a thin plate, and the optimization parameter is its thickness in each point.
The solution of topography optimization problems is akin to a density method where the pa-
rameter p represents the thickness of the membrane instead of the material properties in each
point. Topography optimization problems can emerge from the application of model reduction
techniques to more complex problems, as in [2406] [239].

A different approach to shape optimization consists in the Evolutionary Structural Optimiza-
tion (ESO) developed by Xie and Steven [256] and extended to the Bi-directional Evolutionary
Structural Optimization (BESO) method in collaboration with Querin in 1998 [203]. The BESO
technique considers a fixed mesh encompassing the entire computational domain, and where each
element is either empty or filled by the material composing the structure. At each step of the
optimization, a finite element problem is solved in the region occupied by the material, the
nodal sensitivity of the objective with respect to the shape is computed, and some material is
added or removed from the structure accordingly. Refer to [135] 257, 241] for some numerical
applications, and to [I40] for some improvements to the original BESO method addressing the
issue of mesh dependency.

The technological advancements surrounding composite materials and 3D printing have
fostered the interest in lattice structures, and given rise to topology optimization techniques
adapted to such designs. As an example, we cite the class of homogenization methods. Intro-
duced between the 1970’s and the 1980’s by Tartar and Murat [242, [I87], Gibiansky, Lurie and
Cherkaev [172) [123], [124], and Kohn and Strang [I53], this class of methods have proven its effi-
cacy in shape optimization since the publication of the seminal paper by Bendsge and Kikuchi
in 1988 [44]. Instead of directly modeling the the lattice, which can be extremely costly from the
computational point of view, the material properties of the structure are summarized by a single
tensor depending on one or more parameters, and the distribution of said parameters in space is
optimized. The changes of the parameters in space represent variations of the lattice structure,
like the direction of the fibers of an anisotropic material, or the density of each lattice cell.
Refer to [5l [197), [122] and the references within for further information on the homogenization
technique in topology optimization. Parametrized curves as the Non-Uniform Rational Basis
Splines (NURBS) can replace the density approach to represent the varying field of parameters
in the structure [185, 48]. The inverse homogenization problem, consisting in the reconstruction
of a lattice structure compliant with a given distribution of the material properties in a domain,
can also be addressed using shape optimization techniques [261].
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Shape optimization by Hadamard’s method

In the present thesis we adopt a shape optimization approach relying on the notion of shape
derivative, as introduced by Jacques Hadamard in his memoir [I31] and presented in details
in [6, 100, 138]. Let © be a domain in R? with Lipschitz continuous boundary for d = 2 or
3, ®(-) a real-valued functional defined on a suitable set of admissible domains Sagm, and 6 a
Lipschitz continuous vector field. The shape derivative according to Hadamard describes the
sensitivity of ®(€2) with respect to small perturbations of the domain 2, and is defined as the
Fréchet derivative of the mapping 6 — ®((I+40)2), where I denotes the identity operator. Such
derivative is then used to compute a suitable deformation field. More details on the definition
and computation of shape derivatives are provided in section

In the earliest applications of Hadamard’s method in shape optimization, the structures were
modified by displacing the nodes of the mesh in the directions indicated by the shape derivative
[198, 184]. A major issue of this approach is the rapid degradation of the mesh after few steps of
the optimization algorithm [41]. Solutions to this issue were frequent remeshing operations [30]
or the use of remeshing techniques adapted to the shape optimization problem as the Deformable
Simplician Complex [182) [72, [71].

Another approach particularly adapted to the context of shape optimization is the level-
set method. This technique has been firstly introduced by Osher and Sethian in 1988 [193]
to represent an interface in a fluid dynamics problem. However, since Haber and Bendsge
recognized its potential in 1996 [130], the level-set method has become one of the most popular
approaches in shape optimization applications (see the review paper [247] for further details
and examples). In order to represent a structure Q C RY, the level-set method considers a,
computational domain D C R? larger than Q, and associates to the structure a continuous level-
set function ¢q : D — R that is negative in the interior of the structure, positive outside €2, and
equal to zero on its boundary. The transport of the level-set function by a given vector field can
be computed numerically by solving a suitable advection equation [56] on a mesh covering the
entire computational domain D.

If the level-set function is defined on a fixed mesh 7p, some of the elements are bound to
be crossed by the 0-isoline. One of the earliest approaches consists in altering the material
properties in each element of the mesh according to the local value of the level-set function [19].
This approach is simple to implement and provides reliable results, as shown in the numerical
simulations of section However, it suffers from two important drawbacks. First, it is often
necessary to replace the space outside the structure by a light ersatz material, mimicking the
empty space but ensuring the well-posedness of the differential problems defined on D. The
error introduced by the ersatz material is discussed in [84]. Second, if the 0-isoline of ¢q cuts
through some elements of the mesh, the interface between the interior and the exterior of the
structure is not sharply defined. Some techniques addressing this issue are the immersed interface
approach [254, 230], the XFEM [107, 249] and CutFEM [59, 250] methods, and the LEVITY
algorithm [77]. A more detailed discussion of these methods is presented in section [1.3.2] For
most simulations in this thesis we adopt the approach proposed by Dapogny and Feppon in [91],
combining the level-set method with mesh adaptation techniques so that, at each step of the
optimization, the structure €2 is explicitly represented by a submesh of Tp.

The clear definition of the structure boundary by the level-set function allows for an easier
definition of manufacturability and accessibility constraints [167]. Different methods for the
enforcement of minimal or maximal thickness constraints have been proposed in the literature,
either relying on the use of suitably-defined energy functionals [65], or on the properties of
the signed-distance function [I81] [115]. Accessibility constraints, particularly in the context of
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additive manufacturing, have also been studied under a level-set approach [9, [7, [§].

A notable disadvantage of Hadamard’s derivative is the fact that it does not take into account
changes in the topology of the shape during the optimization. If the structure to be optimized
is represented by a deformable mesh, the modification of the topology is impossible because
it would require changes in the connectivity matrix. However, under a level-set approach, the
discrete nature of the advection step can result in topological changes of the shape, as pointed
out in [I12] Section 1.4.2]. Typically, a thin wall might break, or two parts might fuse together.
Since the shape derivative according to Hadamard is defined only for small deformations, which
do not entail topological changes, discontinuities in the trends of the objective or constraint
functionals can be observed whenever a change in topology takes place.

A related drawback of the level-set method is the fact that, contrarily to the density method,
it does not allow for the appearance of new holes inside the material. This issue has been ad-
dressed by the definition of the topological derivative, measuring the sensitivity of a shape func-
tional with respect to the creation of new holes in the structure [233],[191]. Topological derivatives
have been used in tandem with Hadamard’s shape derivatives and the level-set method in order
to relax the dependence from the initial shape [19] 211 [91].

Generalities on uncertainties in shape optimization

Shape and topology optimization techniques have allowed the development of highly performing
structures in several industrial domains. However, the performance of the structure in a bench-
mark case is not the only aspect to be taken into account, since its behavior can be perturbed
by a number of different factors [10]. One reason can be a deviation of the structure from its
original design because of imperfections in the manufacturing process or in the quality of the
material. Secondly, the wear of the structure in time can deteriorate its material and degrade
its performance. Finally, the loads applied to the structure and the external conditions can
fluctuate in time or be known up to some degree of confidence.

The present thesis addresses the recurrent problem in the aerospace sector of the design
of structures that are as light as possible, but comply with the high standards of robustness
and reliability of the industry. Specifically, a gas turbine engine is characterized by numerous
components interconnected with one another and subject to intense and varying mechanical
solicitations. in order to ensure the robustness of the engine in a wide array of flight conditions,
it is of primary importance to take the uncertain parameters into account while designing the
components of the turbine. It is within this context that Safran Helicopter Engines manifested
its interest into structural optimization under uncertainties, with the objective to develop shape
optimization techniques adapted for the peculiar circumstances of an engine, and to apply them
to some critical components.

The problem of factoring perturbations in structural optimization has appeared in numerous
fields of engineering. As examples we mention [196], 220, [156], 139] for application to aerospace
engineering, [161] for a study in the biomedical context, and [201], 163] for application to mi-
croelectronics and photonics. The issue of uncertainty quantification and shape optimization
of a domain subject to random geometric perturbations is strictly dependent from the method
chosen to represent it. Early approaches rely on the parametrization of the structure by a finite
number of variables. In [196] a Kriging approach is used in order to evaluate the response of
a wing to moderate perturbations of its geometry. In [63, 222 8T, [IT] the uncertain domain is
represented by the perturbation of a reference shape by a Lipschitz continuous random field.
A different approach based on the density method is proposed in [162], where the uncertainty

14



of the shape is modeled by the presence of random parameters in the smoothing of the density
function. Topology optimization techniques under uncertainties on the structure have proven to
be useful in the context of shape identification problems [82] [83].

The presence of uncertainties in the material properties or in the applied loads has been
studied by several different authors, and many different perspectives have been proposed. One
possibility is to suppose that the probability distribution of the perturbation is known or it
can be inferred from experimental measures. In this class of approaches we find the tech-
niques denoted Robust Topology Optimization (RTO) and Reliability-Based Topology Optimiza-
tion (RBTO) [12I]. The RTO approach evaluates the expectation and the variance of the
uncertain functionals of interest. The RBTO methods consist in estimating the probability of
some functional to exceed a given threshold, denoted failure probability |10} 1], and require an
accurate knowledge of the distribution of the uncertainties. More details and references about
RTO and RBTO problems are presented in chapter ] and chapter [5] of this thesis. It should
be remarked that assumptions on the distribution of the uncertainties can be inaccurate, and a
possible approach to this issue can be found in [93].

A different class of problems assumes that the perturbation belongs to a bounded set and
optimize the structure with respect to the worst-case scenario. The functional whose value
ought to be controlled can either appear in the objective function or in the constraint of the
optimization problem, and the two situations necessitate different approaches. The case where
the uncertain functional appears as a constraint, is the main interest of chapter [3] As reported
in [43], the optimization of the worst-case scenario is preferable to robust or reliability-based op-
timization problems when the data are imprecise or if their probability distribution is unknown,
if the strict respect of the constraint in all circumstances is of primary importance, or if the
optimal solution is particularly difficult to manufacture.

The different approaches to the inclusion of uncertainties in the external condition or in the
material properties have some drawbacks and some advantages. On the one hand, the optimiza-
tion under constraints on the worst case does not require any hypothesis on the distribution
of the uncertainties. On the other hand, it can result in a design that is too pessimistic, with
poor performances in the vast majority of situations in order to cover an implausible set of
circumstances. For most mechanical applications, the shape of the structure and the material
properties are known with precision, but the loads applied to them are subject to a higher vari-
ability. Therefore, the present thesis will focus on the case of uncertain external conditions,
without any precondition on the size of the perturbations.

Propagation of the uncertainties in linear elasticity

The main aim of the present thesis is to analyze shape optimization problems in linear elastic-
ity, when the mechanical load is subject to uncertainties in the direction and intensity. More
precisely, let us consider a mechanical structure composed by an elastic homogeneous isotropic
material. We denote S,qm, the class of all admissible shapes that the structure can assume, that
we suppose to be open Lipschitz continuous domains in R%. For any Q € S,qm we assume that
its boundary can be partitioned in three portions with strictly positive measure: I'p, where
the structure is clamped, I'y where mechanical loads are applied, and I'y denoting the free sur-
face. The elastic displacement ug induced by the mechanical solicitation of the structure can
be computed using the equations of linear elasticity. Under such framework, we denote f the
force density acting on the entire volume, g the surface load applied to the portion I'y of the
surface of the structure, ug the displacement field, and o (ugq) the stress tensor. Homogeneous
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Dirichlet boundary conditions are applied on I'p, while I'y and I'y are subject to homogeneous
and non-homogeneous Neumann conditions respectively.

We are interested in finding the admissible structure with minimal volume satisfying a certain
criterion in the form H(ugq,2) < 7 for a suitable threshold 7. The optimization problem can be
formulated as follows

Find the admissible shape Q € Saqm
minimizing the volume Vol(£2)
under the constraint H (ug,?) < 7,
where the displacement ug

solves the elasticity equation

—div(o(ug)) = f in Q,

oc(ug)n = g only,
oc(ug)n = 0 only,
up = 0 on I'p.

For the sake of introducing uncertainties, we consider the probability space (O, A, P), where
the outcome space is denoted by O, A C 29 is a g-algebra on @, and P a probability measure.
Let us suppose that the mechanical load g is uncertain, so that it can be modeled as a random
variable. Thus, the uncertainties propagate to the displacement ug and to the constraint func-
tional H(uq(w), ). In order to solve the optimization problem and obtain a solution which is
deterministic, it is necessary to replace the constraint functional H(ugq,(2) with a determinis-
tic quantity F [H(ugq, )] € R. By taking uncertainties into account, the shape optimization
problem above can be formulated as follows

Find the admissible shape Q2 € Sagm
minimizing the volume Vol(2)

under the constraint F [H(ugq, Q)] < 77,
where the displacement ug(w)

solves the elasticity equation

—div (o (ug(w))) = f in Q,
o(ug(w))n = gw) only,
oc(ugw))n = 0 on Iy,

ug(w) = 0 on I'p,

for almost any event w € O.

Different approaches to shape optimization under uncertainties can be distinguished by dif-
ferent choices of the operator F[-]. For the worst-case approach the deterministic constraint
can be written as F [H (uq, Q)] = esssup,,co H(ug(w),?) < 7. In the case of RTO problems,
the operator F[-] is a combination of the expectation and variance operators. Finally, for
RBTO problems, F [H(ugq, )] is the probability for H(ug,?) to exceed some tolerance, and
the inequality F [H(ugq, )] < 77 can be interpreted as a constraint on the failure probability.
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Summary of the thesis by chapter

This thesis is divided in two main parts. In part [I[] we introduce the main notions on shape
optimization for elastic structures, and we study some optimization problems in a deterministic
setting. Part[[I]presents different approaches to take into account uncertainties on the mechanical
loads applied to the structure. Part[[]is divided in two chapters, while part [ consists of three
chapters, one for each approach.

Chapter 1: Hadamard’s method for shape optimization

In this introductory chapter we present the main notions related to shape optimization used in
the course of this thesis.

In section we start by recalling the general framework of constrained optimization prob-
lems. Then, we focus on optimization problems under constraints of Partial Differential Equa-
tions, and we discuss the notion of gradient-based optimization algorithms. Particular attention
is given to the computation and meaning of the adjoint state. The section is closed by some
recalls and notations of function spaces.

Section describes the differentiation method for shape functionals as introduced by
Hadamard in 1908 [I31], following the notations of [6, 100 138]. After recalling the notions
of Fréchet and Gateaux derivatives, we introduce the concept of shape derivative, we enunciate
Hadamard’s structure theorem (theorem [1.7)), and we show some results on the derivatives of
volume and surface functionals. Next, we present two methods to compute the shape deriva-
tive of a volume functional relying on the solution of a Partial Differential Equation (PDE).
In section the shape derivative is obtained by computing the Lagrangian derivative of the
solution of the PDE and deducing the adjoint equation from it. In section the same expres-
sion is obtained through Céa’s fast derivation method [61]. Further details on the computation
of some expressions are reported in appendix [A]

Finally, in section we discuss the numerical methods for the simulations performed in
this thesis, as well as some alternatives. First, we introduce the level-set method and the signed-
distance function for shape representation. Next, we discuss the notion of adaptive meshing and
the ersatz material method in order to solve boundary value problems for shape encoded by level-
set functions. In section we discuss the null space optimization algorithm as introduced by
Feppon, Allaire and Dapogny in [114]. In conclusion, we summarize the different steps of the
shape optimization algorithm used in this thesis.

Chapter 2: A deterministic thermo-elastic problem

The second chapter of part [I[| focuses on the optimization of elastic mechanical structures in the
deterministic case. In section we start by introducing the equations of linear elasticity, the
strain and stress tensors, the symmetry properties of the fourth-order elasticity tensor, and we
express the linear elasticity equation for isotropic homogeneous materials. Next, we present two
shape functionals of particular interest in the design of mechanical structures: the compliance
(the work of the external forces), and the von Mises stress.

In section we discuss the influence of thermal effects for the optimization of an elastic
structure. We begin by presenting the constitutive equations of an elastic material subject to
thermal dilation. This problem is of particular interest in the context of additive manufacturing,
as discussed by Allaire and Jakab¢in [I5], as well as for multiphysics applications [112].

We suppose the mechanical response to be much faster than changes in the temperature field.
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General introduction

Thus, we consider the time-dependent diffusion equation to compute the thermal distribution at
each instant, while the displacement is modeled by the quasi-static system for linear elasticity. In
the rest of the section we formulate a shape optimization problem for an elastic structure subject
to a time-variant thermal field, with the objective of minimizing its volume under a constraint
on its mechanical compliance. The constraint is formulated by weighting two terms. The first
one consists in the average in time of the compliance for the duration of the simulation. The
second component, not examined as often as the first for time-dependent shape optimization
problems, considers only the final state of the structure. The shape derivative of such functional
is computed in section [2.2.3

In section we present the results of some numerical simulations, starting from the min-
imization of the volume of a 3D cantilever under constraints on the compliance and the von
Mises stress, and concluding with a few results on the thermo-elastic problem. The results of
section [2.2] have been obtained in collaboration with Viacheslav Karnaev, PhD student at the
University of Basel. The study of the thermo-eslatic problem is part of an ongoing work on
shape optimization under a time-variant and uncertain thermal field, and it will be the subject
of future publications.

Chapter 3: Optimization of the worst-case scenario

From this chapter on, we consider various approaches to take uncertainties on the mechanical
loads into account while solving problems of shape optimization. This first chapter of part [[]
presents two different methods to address the case where one of the constraints in the optimiza-
tion problem concerns the maximal possible value that a given shape functional can assume.
For both cases we suppose that the uncertain loads can be parametrized by a finite number of
variables belonging to a bounded and convex subset G of a suitable Banach space.

The first method, detailed in section [3.2] requires the convexity of the function G > g —
H(ugq g, ?) mapping the parameters describing the uncertain loads to the value of the constraint
functional. The strategy consists in approximating the set G by a convex polyhedron Gy with
a finite number of vertices N. Thanks to the convexity of the mapping g — H(uqyg, ), the
maximal value of the constraint is attained in one of the vertices of Gy. Thus, the shape opti-
mization problem can be reformulated as an equivalent problem subject to N constraints, each
one relative to a different loading case. A convergence result for the solution of the approximate
problem to the solution of the original is provided in section [3.2.3] This method mirrors and
justifies the approach of engineers consisting in designing structures that are robust with respect
to a limited number of loading cases deemed representative.

In section [3.3] we propose an alternative method. After introducing the notion of subdifferen-
tial in the sense of Clarke, we adapt it to shape functionals, and we provide a sufficient condition
for its existence under some conditions on the regularity of the functional and of G. The core
of the proposed method consists in the identification of one element of the subdifferential at
each step of the optimization algorithm, and the computation of the shape gradient in the cor-
responding direction. Section details the numerical implementation of the subdifferential
approach.

In conclusion, section [3.4] presents the results of some numerical simulations, optimizing the
volume of two different structures under constraints on the compliance or the LS-norm of the
von Mises stress. The polyhedral approximation and the subdifferential methods have both been
used to enforce the constraint. The numerical results validate both approaches, and illustrate
the convergence of the solution of the polyhedral approximation method towards the exact
one when Gy approaches G. Moreover, the simulations show that the approach based on the
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subdifferential is generally faster than the polyhedral approximation of the set G, but it can
be subject to oscillations if the structure to be optimized and the set of admissible loads have
multiple symmetries. A paper on this subject is currently been drafted.

Chapter 4: Shape optimization of a polynomial functional

In this chapter, we model the uncertain loads applied to the structure as random variables in
order to study a Robust Topology Optimization method. Different approaches to the shape
optimization of the expectation or the variance of a shape functional have been proposed in
the recent years [106] 11}, 21T, 80]. In particular, Dambrine, Dapogny and Harbrecht proved
in [80] that the value of the expectation of a quadratic functional depends only on the first
two stochastic moments of the random variables describing the uncertain loads. Therefore,
the computations of such expectation and its shape derivative do not require computationally
expensive sampling methods.

The main objective of this chapter is to extend the approach of [80] to m-multilinear func-
tionals. The setting of the problem is described in section while the main theoretical results
are presented in section In particular, we extend the definition of the correlation operator
similarly to [226] and, focusing on the constext of linear elasticity, we use a tensor approach
to show that expectation of an m-multilinear functional depends only on the m first stochastic
moments of the random loads.

In the following two sections we show different applications of our method completed by
some numerical results. In section [4.4] we address the issue of the constraint of the L°°-norm
of the von Mises stress. Since the L°°-norm cannot be differentiated, we approximate it by the
L™-norm for m sufficiently large, which can be written in terms of an m-multilinear functional.
As numerical simulation we consider the optimization of the mass of a 3D cylindrical structure
subject to random shear forces on its upper face, under a constraint on the LS-norm of the
von Mises stress. In section we express the variance of a quadratic functional in terms of a
multilinear functional of degree 4. Then, we adapt a 2D example from [80] to show the effect of
a constraint on the expected value and the variance of the compliance.

The main results of this chapter have been submitted as a journal paper titled Shape Op-
timization of Polynomial Functionals under Uncertainties on the Right-Hand Side of the State
FEquation, co-written with Fabien Caubet, Marc Dambrine, and Jérome Maynadier.

Chapter 5: Shape optimization of the probability to exceed a threshold

This final chapter focuses on Reliability-Based Topology Optimization problems for quadratic
functionals. The interest of RBTO techniques lies in the possibility to design structures com-
pliant with requirement on their probability of failure [34] 180 1511 [76] 11].

Let g be a random mechanical load described by a random vector, ug g the associated elastic
displacement, and (u,v) — Q(u,v) € R be a continuous quadratic functional of the displace-
ment. The functional depends on the shape of the structure (like the mechanical compliance or
the L2-norm of the von Mises stress). Let 7 be a threshold value, and let us denote ® () the
shape functional such that

P (Q) =P [Q(uﬂ,g’ uQ,g) > T],

where uq g is the solution of the elasticity equation (which is subject to uncertainties). The
method to compute the value and the shape derivative of ® (Q2) is detailed in sections and
and relies on the computation of suitable integrals of the probability density on the volume
and on the surface of the ellipsoid defined by the inequality Q(uq g, ung) < 7.
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In section we present a different technique to evaluate the probability of failure ® (2) and
its derivative when the external load follows a Gaussian distribution. This second method relies
on the series decomposition of the cumulative distribution function of a generalized noncentral
chi-squared distribution as proven by Ruben in 1962 [214].

In section we detail the algorithms used to perform the numerical simulations for this
chapter. In order to test the method proposed in section we considered problems subject to
centered Gaussian uncertainties, and we apply the quadrature formulas reported in appendix
[C]in order to avoid the numerical computation of integrals in large dimensions. Both methods
have been tested for the optimization of two elastic structures, with the objective to minimize
their volume under constraints on the probability for the compliance to exceed a threshold.
The results are presented in section [5.6] The computation of the coefficients appearing in the
expression of the shape derivative is almost instantaneous. Thus, the solution of such RBTO
problems takes around the same time as the solution of a deterministic shape optimization
problem.

The essential of this chapter has been submitted as a journal paper under the title Shape
optimization under constraints on the probability of a quadratic functional to exceed a given
threshold, jointly written with Marc Dambrine, Helmut Harbrecht, and Jéréme Maynadier.
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Chapter 1

Hadamard’s method for shape
optimization
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1.1 PDE constrained optimization

1.1.1 Notations and general framework

Following the framework proposed in [I76], any optimization problem can be characterized in
terms of optimal control theory by a state problem, an objective function and a control. The
control z is a variable or a function belonging to a given set of admissible controls Xyqm. In the
domain of constrained optimization, the state is another variable y belonging to a Banach space
of admissible states Vaqm such that, for a given control x € X,qm, it solves the state problem

f(y,z) =0, (1.1)

where f : Vaqm X Xaam — W is a function taking values in a vector space W. If the state problem
is well-posed, the state can be seen as an implicit function of the control as y = y(z). The
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objective function is a real-valued function of the control and of the state J : Xqm X Vadm — R.
If the state problem is well-posed, a reduced cost J: Xaam — R can be defined as a function
of the control as

J:x— J(x) = J(y(z),z). (1.2)

Using the notation stated above, an optimization problem can be written as

Find the control x € Xyqm

minimizing the objective function J(y(z),x) (13)
where the state y(r) € Vaam is solution '

of the state problem f(y,z) = 0.

We remark that in problem (|1.3]) the state problem (|1.1)) acts as a constraint of the optimization
problem. Problem (1.3) can be expressed more concisely using the reduced objective function
as
Find the control x € Xyqm (1.4)
minimizing the reduced objective function J (). '
For the purposes of PDEs constrained optimization, equation ([1.1)) represents a boundary-
value problem for partial differential equations, and the state y is a function belonging to a
suitable Sobolev space and defined on a given domain 2. Problem ([1.4]) can be further enriched
by imposing some constraints on the control z, which may depend on the solution of one or
more state equations.

Find the control x € Xayam

minimizing the reduced objective function J(x)

under the constraints (1.5)
G(z) = o0,
H(z) < 0,

where G : Xpam — RNG encodes Ng equality constraints, and H — RMH encodes Ny in-
equality constraints. The coverage of the constrained optimization problem is discussed in
section [[L.34]

Optimal control problems can be distinguished in different categories according to the nature
of the control function. If X4, consists of functions defined on the domain 2 or on some part
of it, problem is said to be a distributed control problem. Density approaches to topology
optimization like the SIMP method [46, 47] can be classified in this category. A second class
encompasses the boundary control problems, for which the control x is a function defined on 02
or on part of it. In the context of this thesis we are interested in a third class of optimization
problems, where the control is the shape of the domain €2 itself.

1.1.2 Gradient-based optimization algorithms for constrained optimization

The algorithms for the solution of optimization problems can be divided in two classes. Gradient-
free methods include various evolutionary methods [256], 54] among which we find the genetic
algorithm (see [I149] and [6, Chapter 8]). Gradient-based methods rely on the computation of
the sensitivity of the objective function and the constraint with respect to the control, and
require some further regularity on J and f with respect to the gradient-free methods. It should
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be remarked that gradient-free and gradient-based methods can be used together in order to
accelerate the solution of an optimization problem. See [49] as an example in the context of
topology optimization, where a genetic algorithm is used to find a suitable initial condition for
a gradient-based method.

In general, all gradient-based algorithm follow a similar structure [126, Section 2.3]. Starting
from an initial guess u(?) for the control, the following loop is executed starting from k = 0 until
a certain convergence criterion is satisfied:

1. identification of the state y(¥) =y ($(k)) corresponding to the control z®) by solving the
state problem f(y*), z(®)) = 0;

2. computation of the derivative of the reduced objective function

7 () = 359 (=) a); 1)

3. computation of an increment dz*) from the results of points [1] and
4. update the control z*+1) « §z*) 4 2(*) and increment k.

The computation of the derivative of the objective function with respect to the control is a
crucial step in any gradient-based optimization algorithm [126] Section 2.3.2]. By applying the
chain-rule on equation (|1.6) we obtain the following expression for the gradient

oJ

dy
"oy

d - J
7 (2) = -

-0 ’y

The terms g—i\ pp(ky and g—;| can easily be computed from the expression of J. The

y=y*
term %] L=z is the sensitivity of the state with respect to the control, and its computation is
more delicate. One possibility is to estimate it numerically after the discretization of the control.
Such a strategy can be very costly if the discretized control is represented by a large number of
parameters, since it requires to solve the state problem for all possible directions of perturbation
of the control.

A different approach to compute the sensitivity % consists in the solution of the following

sensitivity equation, obtained by the differentiation of the state problem

of oy

Oyl ) Ox
The numerical solution of equation ((1.8)) is challenging if the control is discretized by a large
number of parameters, since the sensitivity equation should be solved for as many different
right-hand sides as the number of degrees of freedom of the control.

In order to avoid such complication, it is possible to consider an adjoint approach, as pre-
sented in [169], Section 6.5], [126], Section 2.3.3], and [I76), Section 9.3.2].

__of
o) O

(1.8)

Definition 1.1 (Adjoint operator). Let X and ) be normed vector spaces. We denote X* the
topological dual of X, which is the set of bounded linear operators defined on X. For any L € X*
and x € X, we denote <L7$)X*,X the evaluation of L in the point x.
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Let A: X — Y be a bounded linear operator. The adjoint operator A* : Y* — X* is such
that, for any y* € Y* and x € X

(A 2) e 0 = (Y7 A)ye y - (1.9)

In the finite-dimensional case, A is a matrix, and its adjoint A* operator coincides with its
conjugate transpose.

Let us suppose that the sets of the admissible controls X, 4, and states Vayqm are subsets of
the reflexive Banach spaces U and )Y respectively. Moreover, we consider W to be a Banach

space as well. Since % : Y — W is a bounded linear operator, we can identify is dual by

|y (®)
*
the operator (%’y:y(k)) : W* — Y*. Let us define the adjoint state (or co-state) \*) € W,

as the solution of the adjoint equation
*
: (1.10)
y=y*)

(af ) A®) = <3J
Y ly—yr) oy

By injecting the result of the adjoint equation ([1.10) and the sensitivity equation (|1.8)) into
equation (|1.7]) we obtain

d - oJ
@J (a;(k)) = 9

g

«Of
- 27 RSN () el
peaty 0T

w=a(h) Ox

\(k* Of ’ Oy
e=a(®) Jy

(1.11)

ey (k) O I

Since the adjoint state M%) does not depend on the perturbation 5, it can be solved only
once per iteration of the optimization algorithm, after the solution of the state problem.

Crucial assumptions for the application of gradient-based optimization algorithms are the
differentiability of the objective J and the state function f with respect to the control, and the
ability to upgrade the control by a suitable increment. In the case of distributed or boundary
control problem, the control function x is supposed to belongs to a closed subset of a suitable
Banach space. However, for shape optimization problems the set of admissible controls Xygm
consists in a set of domains in R?, which is not provided with a natural vector structure.

One possible solution consists in the parametrization of the domain by a finite number N
of parameters, so that Xaqm is isomorphic to a subset of RN (see [189] and other chapters of
[139]). Despite its simplicity and widespread use in industrial contexts, such approach bounds
the search for the optimal shape to a narrow class of structures and does not allow for radical
changes of the geometry.

The approach presented in section [I.2] defines the derivative with respect to shape in terms
of perturbations of the domain, allowing for a greater flexibility in the choice of the control
and a greater complexity in the resulting optimal shapes. In this section we discussed the
differentiation of the objective function of an optimization problem. It is evident that the same
considerations can be done for the derivation of a constraint functional.

1.1.3 Recalls, remarks, and notations on function spaces

Let us consider a bounded domain Q C R¢ with Lipschitz continuous boundary, in dimension
d = 2 or 3. Before stating the definition of shape derivative proposed by Hadamard, we recall
the definition of some functional spaces [216, Chapter 3]. For all 1 < p < oo, the set L? (Q) is
the space of all real-valued functions f defined on Q such that |f|? is integrable on €. The space
L () contains all essentially bounded functions defined on €.

LP(Q) = {f: Q=R : [|fIF dx < oo} for 1 < p < o0,
L*(Q) = {f: Q=R : ess supf <oo}
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1.1. PDE constrained optimization

The function spaces LP (§2) are Banach spaces with respect to the norms

Ifll, = (olflP dx)'?  for1<p< oo,

1.12
| fllo = ess supf. (1.12)

If the domain 2 has finite measure, the LP spaces are nested into one another as proven by
the following proposition.

Proposition 1.2. Let Q be a domain with finite measure || < co. Let p,q € [1,00[U{+0o0},
where p < q, and f € L1(Q). Then, f € LP (Q) as well and

i, o 17,

m > W ifq < 00,
(1.13)
Ilf1l,,

< otherwise.
Mle < Ifll

Equation (1.13]) can be proven using the definition of the LP norms, Lebesgue’s definition of
integral, and Hoélder’s inequality. It can also be remarked that the LP-norm for p < oo can be
used to approximate the supremum of |f| in Q.

Proposition 1.3. Let 2 be a domain with finite measure |Q] < 0o, and f a real-valued function
such that f € LPo (Q)NL>® (). Then f € LP(Q) for all p > po, and

Jm [1Fl], = 11 £l -

Proof. At first, from equation (|1.13]), we can deduce that

limsup [ f[, < lm || fll = [l - (1.14)
p—0o0

— p—oo
In order to prove the opposite inequality, we define the family of sets A, for all 0 < e < || f||, as

Ac={z e Q:|f(@)] > Ifll—e€}-
We remark that, by the definition (1.12)) of the L°°-norm, |A¢| > 0. We deduce that

121 = [ 1= [ 1172 (1l — 7 1A

from which follows

1
£l = (1]l =€) [A?
By taking the limit for p — oo, we get

. . . . ]_/p _ .
timnf 1], > Tim (1F] — )[4 = (|F]c — )
Thus, since such inequality is true for all 0 < e < || f]| ..
timinf |1, > 1] (1.15)
Combining (1.14)) and (1.15) we conclude that limy e || f]l,, = || f{oo- O
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Chapter 1. Hadamard’s method for shape optimization

A major family of function spaces in the context of partial differential equations is composed
by the Sobolev spaces W*? (Q) for 1 < k, p < oo [I10, Section 5.2]. For any multi-index oc € N,
we denote || the sum of its components. A real-valued function f defined on  C R? belongs
to WP (Q) if, for any multi-index o = (a7, ..., aq) such that || < k, the partial derivative

D* = (%?1 e %f exists in the weak sense, and it belongs to L? (£2).

WEP (Q) = {f eLk(Q) : / DY f|P dx < oo for all multi-index « such that |a| < k‘} .
Q

All Sobolev spaces WP (Q) for 1 < k,p < oo are Banach spaces with respect to the following
norm [110, Section 5.2, Theorem 2]

1/p
1 fll,p = (Z HD"flﬁ) -

|| <k

The spaces W52 (Q) are also denoted as H* () for any 1 < k < oco. The function space
L2 (Q), as well as all spaces H* (Q) are Hilbert spaces with respect to the following scalar products

(Frg)s = /Q fodx  f.gel?(9),
ow= X [0 D dx  fgeli(@ k21,

|| <k

If ' C 99 is a portion of the boundary of Q with strictly positive measure, we denote LE(9)
(or WEPR(Q), or HE(Q)) the subset of all functions belonging to L? (Q) (or WP (Q) or H* (Q)
respectively) which are equal to 0 almost everywhere on T'.

The definition of the function spaces introduced here can be extended to vector-valued func-
tions. We denote L (Q)%, Wk (Q)d, and H* (Q)? the equivalent spaces of L? (Q), W*? (Q),
and HF (Q) for functions with values in R%. A function f : © — R belongs to LP (Q)% if all its
components belong to L? (Q) (likewise for W*» (Q)d, and H* (Q)9).

d
Finally, we denote W1 > (Rd) the space of Lipschitz continuous vector field in R?, that is
d d dxd
whee (RY)" = {0 e (RY)" : voeL™(rY) g }

d
The set W1 (Rd) is a Banach space with respect to the norm |[-[|; ., such that

1011 00 = 0]l + VO], = sup [[0(x)]|, + sup [[VO(x)]|, -
x€R4 x€R4

1.2 Hadamard’s boundary variation method

1.2.1 Shape derivative of a real-valued functional

The method of differentiation with respect to the domain presented in this section has been
proposed by Jacques Hadamard [I31]. All concepts, definition and proof presented here can be
found in [I38, Chapter 5], |6, Chapter 6], and [L00, Chapter 9].
d
If ¢ Wh>® (Rd> is a Lipschitz continuous vector field such that [|@]|; ., < 1 and denoting

I the identity operator, the mapping x — (I 4 6(x))x is a Lipschitz continuous diffeomorphism,
meaning that it is differentiable, invertible, and its inverse is differentiable (see |6, Lemma 6.13]).
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1.2. Hadamard’s boundary variation method

Definition 1.4 (Lipschitz domain). A subset Q of R? is said to be a Lipschitz domain if Q
is an open bounded subset of R%, with positive measure, and such that its boundary 0 can be
described by a finite number of Lipschitz continuous local maps [218, Definition 1.4).

d
Given a Lipschitz continuous vector field § € W1 (Rd) with [|€]]; ,, <1 and a Lipschitz
domain 2 € S,qm, we define the deformed domain g as

Q9= (1+0)0 = {X R : Ix €O for which X = (I+6(x))x} . (1.16)

For the sake of simplicity, we consider a class of admissible shapes Saqm, and a class ©,4, of
vector fields such that, for all @ € O,4,, the deformed set g belongs to Saqm. Let ®(-) be
a shape functional ® : Syq, — R. At first, we recall the notion of shape differentiability, as
introduced in [138, Chapter 5] or in [0, Section 6.3].

Definition 1.5 (Fréchet differentiable shape functional). A real-valued functional ® : Spgm — R
1s shape differentiable according to Fréchet at ) if there exists a linear continuous function

d
Aq : Whe (Rd) — R such that
D () = () + Aa(6) +0(0)

d
for all @ € WhH™® (Rd) , where éir% ﬁ = 0. The linear form Agq is called shape derivative of
— ,00

® in Q and is denoted as %@(Q) or D®(9).

Fréchet’s definition of derivative is not the only possible definition of derivative in the context
of shape calculus. We report here the definition of Gateaux differentiability as presented in [100,
Definition 3.3], which extends the notion of directional derivative, but is weaker than the Fréchet
definition.

Definition 1.6 (Gateaux differentiable shape functional). A real-valued shape functional ® :

d
Sadm — R admits a Gateauxr semiderivative d® (Q2;0) in the direction 6 € Wl (Rd) if the
following limit exists and is finite

The shape function ® is said to be Gateaux differentiable in € if it admits a Gateaur semideriva-

d
tive for any direction @ € WH>® (Rd> , and the mapping 6 — d® (2; 0) is linear and continuous.

Unless stated otherwise, the notion of differentiability of shape functionals considered in this
thesis refers to the Fréchet definition. If the domain 2 is sufficiently regular, we can assume
that the value of the derivative D®(£2)(0) depends only on the normal component of the vector
field @ on the surface OS2 of the domain. Such result derives from the following theorem, proven
by Hadamard and stated in [I38, Proposition 5.9.1].

Theorem 1.7 (Structure theorem). Let Q € Suqm be a Ct domain, and let us denote by n(s) the
outwards normal to the surface O in s € 02. We suppose that ® : Suam — R is a differentiable

d
functional. If 81,05 € WH™ (Rd) are Lipschitz continuous vector fields such that 81-n = @5 -n
on 0L, then D®(Q)(61) = D®(2)(02).
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Chapter 1. Hadamard’s method for shape optimization

The expression of the shape derivative of a shape functional can be computed directly using
definition We recall the computation of the shape derivative of a volume functional as
presented in [I38, Section 5.2] and [6, Section 6.3].

Proposition 1.8 (Shape derivative of a volume function). Let f € W1 (Rd) be a real valued
function. Let Q be an admissible domain such that, for any admissible displacement field 6 €

Oudm, the perturbed domain Qg belongs to Saam. Then, the shape functional ® : Q — /f(x)dx
Q

is shape differentiable in 2, and its derivative can be written as

DH(Q)(8) — /Q div (0(x) f(x) ) dx. (1.17)

If, moreover, ) has a Lipschitz continuous boundary, the shape derivative of ® can be also
expressed as

De()(9) = [

onN

(n(s) - 8(s)) f(s) ds. (1.18)

Proof. At first, we compute the value of the shape functional in a perturbed domain. Let

0 € O4gm C WH™ (Rd>d be a vector field such that |[@]]; ,, < 1. Assuming that the perturbed
domain Qg = (I+ 0)2 belongs to the class Sagm, it is possible to evaluate ® in Qg. Performing
the change of variables x = (I + 8)~!X, the integral on {0y can be written as an integral on the
reference domain {2

@) = | f(sa)d;c:/ﬂfo(no)(x) det (I + V8)| dx, (1.19)

where I denotes the identity matrix. Since x — (I + 6(x))x is a diffeomorphism and f is a
differentiable function, it is possible to differentiate equation (1.19) around @ = 0. Recalling
that the derivative of the Jacobian term is
d ~ P
— |det (I 4 V)| (0) =div e, (1.20)
deo 0—0

we find the expression for the functional ® as

DBQ)(0) = L a(0y)|  (8) = [8060) VGt [ ) divx)ax = [ div (80 (x)) dx
de 0—0 Q Q Q

(1.21)

The surface expression of the shape derivative can be found integrating by parts the

volume expression (1.21]). ]

The computation of the derivative of shape functionals defined on the boundary of 2 is more
delicate. We start by recalling some notions of differential geometry as reported in [I38] Sections
5.4.1 to 5.4.3].

Definition 1.9 (Differential operators on a smooth surface). Let I' C R? be a smooth manifold
without boundary of dimension (d — 1), and g : T — R a C' function. Let §: R — R a C"
extension of g to RE. The tangential gradient of g in's € T' is defined as

Vrg(s) = Vg(s) — (n- Vg(s)) n,
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1.2. Hadamard’s boundary variation method

where n(s) is the unit vector normal to T in s.
The tangential divergence of a C* function g : T — R"™ in s is defined as

(divr g) (s) = (divg) (s) — (Vg n) - n,
where g denotes a C' extension of g to R™.

It should be remarked that the definition of the tangential gradient and derivative are inde-
pendent from the choice of the extension function. In order to state the formula for the change
of variables for functionals defined on manifolds [138, Proposition 5.4.3], we introduce the notion
of mean curvature of a smooth manifold.

Definition 1.10 (Mean curvature). Let I' be a smooth manifold without boundary, and n a
C! unitary extension of the normal vector n to a neighborhood of Gamma. Then, the mean
curvature of I' ins € I is defined as

H(s) = divpn(s) = diva(s).

d
Lemma 1.11. Let Q be a C* bounded domain in R%, § € W™ (Rd) a displacement field, and
g € CH(09) a real-valued continuous function. Then, the following identity holds

/ gO(I+9)_1d§:/ g Jacoq (1 +0)) ds.
O((I+0)2) 0N
The tangential Jacobian is defined as

Jacoo (1+6)) = | (T+ 6)""n|| |det (1 + VO)|.

Moreover, the mapping 0 — Jacyq (14 0)) is differentiable in @ = 0, and its derivative is

d ~ ~
@J&C@Q ((I + 9)) (0) = diVF 0.

The proof of lemma can be found in [I38, Proposition 5.4.3 and Lemma 5.4.15].
Finally, we can state a proposition on the shape derivative of functionals defined as integrals
on the boundary of a domain, reported as [6, Proposition 6.24] and [I38, Proposition 5.4.18].

Proposition 1.12 (Shape derivative of a boundary functional). Let Q be a C? admissible do-
main, and g € W21 (Rd) a real valued function. Then, the shape functional ® : Q — / g(s)ds
oN

is shape differentiable in 2, and its derivative is expressed as

DP(Q)(0) = /8Q (Vg-0+gdivr8) ds. = /é99 (n(s)- 6(s)) (gfl + Hg) ds. (1.22)

In order to be able to compute the shape derivative of more complex shape functional, it
is necessary to introduce the concept of derivative of a function defined on a variable domain
Q. Let % : Sagm X RY — R be a function such that ug(x) is well-defined if x € Q. As stated
in [0, Section 6.3.3] and [112] Section 1.2.3], there exist two main definitions of derivative of
uq(x) with respect to the domain. Considering 6 as a transport vector field, the two derivatives
are denoted Eulerian and Lagrangian derivatives, by analogy to the derivatives in continuum
mechanics.
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Chapter 1. Hadamard’s method for shape optimization

Definition 1.13 (Eulerian derivative). Let Q € S,am be an admissible domain in R and

d
0 € Oy, C WH™® (Rd) such that Qg = (I 4+ 0)Q € Saqm. Let x € RY such that x belongs to
both Q and Q. The Eulerian derivative of u in x in the direction 0 is the differential of the
mapping @ — uq,(x) and is denoted

)= qgua0| @)

An important drawback of the Eulerian derivative is that the definition makes sense
only for x fixed. Moreover, if x belongs to the boundary 92, it might not belong to (g for all
displacement fields 8 € O 4.

Definition 1.14 (Lagrangian derivative). Let Q € Suam be an admissible domain in R?. For
0 € Ou4m we denote ug, o (I+ 0) the function defined on 2 obtained by pushing back uq, to the
original domain . The Lagrangian derivative of w in x in the direction 0 is the differential of
the mapping 0 — ugq, o (I+ 6)(x) and is denoted

~

J = iu o X 0).
iin(x)(8) = gguo,© (1+6))| _ (®)

In contrast to the Eulerian derivative ug,(x), the Lagrangian derivative tq(x) is well-defined
on the domain € regardless to the direction 8. Wherever they are both defined, the Lagrangian
and Fulerian derivatives are related by the following identity

i (x)(8) = uh(x)(0) + Vug(x) - 6(x). (1.23)

Further analysis on the sensitivity of a shape functional can be done by computing its second
derivative. We will not present any result on higher-order shape differentiation, and we suggest
the reader to consult [I38), Section 5.3] and [86] for further information on the subject.

1.2.2 Differentiation under elliptical PDE constraints

If the evaluation of the functional to be differentiated depends on the solution of a boundary-
value problem, the expression of the shape derivative is not as simple as in proposition In
order to illustrate the procedure of computation of the shape derivative, we consider a simple
shape optimization problem in the form of problem , where the state is the solution of an
elliptic partial differential equation. We focus on the case where the state uq is a vector field, as
for the linear elasticity equation. The analogous computation for the scalar case can be found
in [112], Section 1.2.3].

Let Sagm be a family of admissible domains in R? with d = 2 or 3. We suppose that the
boundary of any domain in S,q, can be decomposed in three disjoint parts denoted I'p, I'y,
and I'y. For the sake of simplicity, we suppose that all admissible domains share the portion I'p
of their boundary. Let A be a positive definite matrix, and f € H! (Q)¢ and g € L2 (I'y)?. For
all s € 092, we denote n(s) the unitary vector which is orthogonal to the surface 9 in s. We
suppose that the objective function J has the following integral expression:

J(u,Q) = /Q Go(u(x) + i1(Vu(x))) dx  for ue H' (Q)7, (1.24)
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1.2. Hadamard’s boundary variation method

where jo : R — R and j; : R? — R are two C' functions. Finally, we suppose that there exist
two positive constants Cy, C1 > 0 such that |0;50(v)| < Co ||v||ga and [9;0; j1 (V)| < C1 [|V||gaxa
for all 4,5 € {1,...,d} and any v € R? and V € R4*9,

We aim to solve the following shape optimization problem
Find the admissible shape ) € Syqm
minimizing the objective function J(ug, 2),
where the state ug € H! (Q)*

is solution of the state problem

(1.25)
—div(AVug) = f in Q,

(AVug)n = g only,

(AVug)n = 0 onTy,

up, = 0 on I'p.

The weak formulation of the state problem in ((1.25) is the following
Find uq € H%D () such that

for all v € H%D (Q) (1.26)

/AVWQ:Vvdx:/f-vdx—i—/ g-vds.
Q Q I'x

In order to use a gradient-based optimization method to solve problem ([1.25)), it is necessary
to compute the shape derivative of the reduced objective functional J : Q — J(uq g, ). As first
step, we compute the expression of the objective function for a deformed domain. Let €2 be a

d
Lipschitz domain, and ©,4,,, C Wh> (Rd> a family of Lipschitz continuous vector fields as
d
@adm:{gewl,oo (Rd) : 6=0o0n FD}

We consider a deformation field @ € ©,4, and a deformed domain Qp = (I + 6)Q2, and we

~

compute the value of J(€yg):

~

T(20) = (e, Q) = [ (oo, () + 1 (Vzua, () dx (1.2

where V3 indicates the gradient operator with respect to the perturbed reference. By applying
the change of variables x = (I +8)~!X, the expression (1.27)) can be reformulated as an integral

on the reference domain . We recall that, for any function f € C! (Rd), the gradient in the
perturbed reference of f can be expressed as

Vif(X) = ([1+V0) TV (fo(l+8))(x). (1.28)
d
By consequence, the gradient of a vector function f € C! (Rd> in the perturbed reference is

ViA£(X) =V (fo(I+0))(x)(I+Ve) . (1.29)

We denote 61, = ug, o (I + ) the solution of the state problem on the perturbed domain
under the change of variables, and we remark that ﬁ% is well-defined on the reference domain
Q). Therefore, we can express (1.27)) as

~

7(Q) = /Q (do((x)) + 2 (VEG ()T + V8) ™)) [det (I + V8)] dx. (1.30)
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Chapter 1. Hadamard’s method for shape optimization

The shape derivative of J| (Q) in the direction @ is obtained differentiating equation (1.30)
with respect to 8. By differentiating equation ((1.30)) with respect to 6 we obtain
d ~

DJ(2)(8) =57 (%)

(6) = / (jo(ua(x)) + j1(Vuq(x))) div 0 dx
0=0 Q
+ /Q (Vjo(ug(x)) ug(8) + V ji (Vug(x)) : (vug(é) - qu(X)va)) dx.

(1.31)
where 1 (60) is the Lagrangian derivative of ugg in the direction @, as introduced in defini-

tion The terms V jo(ug(x)) € H! (2)% and V j1(Vug(x))L2 (2)7? are the dual operators
of the derivatives of the functionals jy and j; in the respective function spaces. The equation
defining the material derivative of the state can be found by differentiating the weak expression
of the state problem of on a perturbed domain with respect to 6.

Find ug, € H%D (Qg) such that
for all v € H%D Q)
/ (AV (ug,) (X)) : Vavo (I+60)1(X) dx (1.32)

0

= [ fX) -vo(I+0)'(X)dx + g(B) - vo(I+6)'(s)ds.
Qo (I+0)I'x

Since the mapping x — X = (I + 0)x is a diffeomorphism, it is possible to take as test
function v defined on Q. Expressing the equation in problem ((1.32)) in terms of the reference
domain, we get that for all v € H! (Q)

/Q (+v0) " AVES(x) (1+ V) ™) : Vv(x) [det (I+ VO)| dx

- / fo(I+0)(x)-v(x) |det (I+ V)| dx+ [ go (I+6)(s) - v(s)Jacsn (I +0)) ds.
Q I'n
(1.33)
By differentiating (1.33)) with respect to €, we obtain the equation solved by the material
derivative of the state

/ (div(a) AVuq — V@TAVUQ — AVUQV§> :Vvdx + / Aﬁg(a) : Vvdx
Q Q

= /Q (Vfé +div(§)f) vdx + . <gi + Hg> -v(s)ds. (1.34)

Thus, the material derivative 110(8) is solution of the following problem
Find ug(0) € HILD ()% such that
for all v € Hy_ ()

/ AVig(d) : Vvdx = / (-div(é) AVuo + V0 AVug + AVugve ) : vvdx (135
Q Q

—I—/ (Vf@ + div(a)f) -vdx + <8g + Hg) -v(s)ds.
Q I'n On

The expression ((1.31) for the shape derivative of the reduced functional is not suitable
for a gradient-based optimization algorithm, since its evaluation in a direction 6 requires to
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1.2. Hadamard’s boundary variation method

retrieve the material derivative of the state by solving problem (1.35). One method to avoid
the computation of 1 (@) consists in the computation of a suitable adjoint state (or co-state)
wq € H! (Q)d, solving the following adjoint problem

—~div (ATVwa) = Vjo(ug) — div (V ji(Vug)) in Q,
(ATVWQ) n = V(j1(Vug))n on I'y U T, (1.36)
WO = 0 on FD,

whose weak formulation is
Find wq € HfD (©2) such that
for all v € H%D (Q) (1.37)
/ATVWQ :Vvdx = /ng(ug) -VdX—i—/le(VuQ) : Vvdx.
Q Q Q

The Lax-Milgram theorem ensures that, if the regularity and growth properties of jo and j; are
satisfied, problem is well-posed and the adjoint state wq is well-defined.

By considering ug(0) as test function in problem , recalling the expression of prob-
lem and the fact that ATVwq : Vv = AVv : Vwq by definition of the inner product,
we get the following identity

/Vjo(ug) . UQ(a) dx + / V j1(Vugq) : Vl'lg(a) dx = /ATVWQ : Vﬁg(a) dx
Q Q Q
.5 a0 L o ~ og
:/AVuQ(O) : VWde:/ (VfO—l—dlv(O)f) -wodx + (9-n) — +Hg | -wqds
I'n on

+/ < d1v JAVug + VH AVuq + AVuQV0> : Vwq dx.

(1.38)
When injecting equation ((1.38)) into equation (|1.31]), we get the following expression for the
derivative of the reduced functional

DJ(Q)(8) = / Go(ug) + j1(Vug)) div(d) dx — /Q Vj1(Vug) : (vuﬂvé) dx
+/ a)f) -wq dx + . (a(s) . n(s)) (grgl + Hg> -wq ds
+ / ( div(0)AVug + VO AVug + AVUQVG)  Vweg dx

:/ (VfTwQ>-0dx+ A (gi—l—Hg)-Wst
N

+/ (]0 )+ j1(Vuq) +f-wg — AVug : VWQ> div(@) dx

(1.39)

+ / —Vug V j1(Vug) + Vwo T AVug + VuQTATVWQ> V0.
Q

Formula shows the volume expression of the shape derivative of J. IfQisact domain,
theorem ensures that the derivative in the direction 8 can be expressed as an integral on OS2
depending on the normal component of 0 in each point of the surface. In order to compute such
expression, we consider the following lemma.
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Chapter 1. Hadamard’s method for shape optimization

Lemma 1.15. Let Q C R? be a C' domain, ¢ € C' (Q) and M : Q — R4 two continuous
functions, and @ : C* (Q)d a smooth displacement vector field. For each point s on 0§) we suppose
that O(s) can be decomposed as 6(s) = n(s) (6 - n)+ 0., where n(s) is the unit vector orthogonal
to O in s, and 0. is the component of 8 tangent to 0S2.

Then, the following identities hold

/ $(x) divO(x)dx = [ (s) (8(s) - n(s)) ds / Vé(x) - 0(x) dx, (1.40)
Q Q

¢
o9

/QM(X) . VO(x) dx :/

[ (n"Mn) (6(s)n(s)) ds + /a _6IMnds - /Q div(M(x)) - 6(x) dx.

(1.41)

Proof. The proof of the identity (1.41)) derives directly from the formula of the divergence of the
product of two functions, and from the application of the divergence theorem. Indeed

/6 9(5)(6(s) - n(s)) ds = /Q div (68) dx — /Q ($(x) divO(x) + Vo(x) - 0(x)) dx.

In order to prove equation ([1.41)) we consider the identity div(M@) =M : VO + div(M) - 6,
and we procede as for ((1.40)).

/ n(s) - (M(s)0(s)) ds = / div(M8) dx — / (M(x) : VO(x) + div(M) - 0(x)) dx.  (1.42)
oN Q Q

Equation (1.41]) is obtained by applying the decomposition 8(s) = n(s) (6 - n) + 0, to the left-
hand side of equation (1.42)). O

The surface form of D.J(€2)(0) can be found integrating equation (1.39) by parts. Indeed,
using equations ((1.40) and (1.41) we find

D.J(2)() Z/m (jo(usz) +j1(Vug) +f - wq — AVug : WQ) (@ - n) ds
+ /Q (wTwQ — V(jo(ug) + j1(Vug) — AVug : vWQ)> - 6(x) dx
+ ) n" (—=Vuo™(V j1(Vug)) + Vwo AVug + VuaTA"Vwo ) n (8- n) ds
+ /BQ 53(5) (—VUQT(V j1(Vug)) + Vwo ' AVug + VuQTATVWQ> n(s)ds

_ / div (~Vug"Vi1(Vug) + VwoTAVug + Vug"A"Vwg ) - 8(x) dx
Q

-l-/FN (gi—FHg) - WQ (an) ds.
(1.43)

Thanks to theorem the second, fourth, and fifth integrals appearing on the right-hand
side of (1.43]) are equal to zero. Therefore, assuming that & = 0 on the portion I'p of the
boundary, and considering the boundary conditions of problems (1.25) and (1.36)),the shape
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derivative of the reduced objective functional can be reduced to

~

DJ(Q)(8) :/ (jo(ug) +j1(Vao) + £ - wo — AVuq : va> (6-n) ds
ToUl'y
+ nT (VWQTAqu + quTAvaQ) n (@ : n) ds
Toul'y

+ n' (—VuQT — le(VuQ))> n @ . n) ds

ToUl'y

+ . ((({;];gl—l—Hg)-wQ(@'n) ds

_ _ Oug  0j ~
= Jeoors (f wq — AVug : wg on (Vugg)) (0 n) ds

+ Jo(uq) + j1(Vug) (@n) ds + @%—Hg “WQ (an> ds
T'oUl'N ry \On

Lo () (352 () a0 )6

= (jo(uﬂ) + j1(Vug) + - wqg — AVug : VWQ) (@ . n) ds
ToUl'y
owg

og R
- I'n (an ot 5, 8t H(g WQ)) (a-n) ds.

(1.44)
We remark that, contrarily to equation l} the term 0 appears explicitly in the expressions

(1.39) and (1.44]) of the shape derivative, since the direction of differentiation does not appear in
the definition of the adjoint state in (1.36). Moreover, the expressions ‘1.39I and (|1.44)) display

clearly the linearity of the function DJ(£2), in accordance with definition

1.2.3 C(Céa’s fast derivation technique

The procedure detailed in section 2| allows to rigorously derive the expression of the shape
derivative of a shape functional under PDEs constraints. However, the computation of the
problem solved by the material derivative and the integrations by parts to obtain a surface
expression of the shape derivative can be cumbersome for more complex state problems or
objective functionals.

In practice, a faster method developed by Céa in [61] is often used instead. In this section
we illustrate Cea’s fast derivation method as presented in [0, Section 6.4.3] and [I12, Section
1.2.3]. Such technique allows to deduce the equation solved by the adjoint state without having
to compute the material derivative of the state, and it provides directly the surface expression
of the shape derivative. Nevertheless, this method is purely formal, and does not ensure the
existence of the derivative of a shape functional.

Let us consider, once again, the shape optimization problem - We are 1nterested in
computing the shape derlvatlve of J(Q) = J(ugq, ), where ug solves the state problem in

and J is defined as in .

d d d
We define the Lagrangian function £ : Saqm x H? (Rd) x H (Rd) x H! (]Rd) such that
£(20,%.1) = / (Go(Ti(x)) + j1(Vii(x))) dx — / AVi(x) : Vv (x) dx
Q

+/Qf(x dx+/g s)ds+ [ A(s) - i(s) ds.

I'p

(1.45)
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We remark that all arguments of the Lagrangian £ are independent from one another, in
particular from the shape Q of the domain. The terms w and A act as Lagrange multipliers
for the PDE constraint and for the Dirichlet boundary condition on I'p. At first, we remark

that the partial derivative 85 evaluated in U = UQ is equal to zero for any choice of w and .

Indeed, by the week formulation of problem (|1 we have

oL

8A(Q ug, w, )\ /AVuQ Vv(x)dx =0,

and, for the boundary condition on ug

8f(Q,uQ,vAv,S\)(S\):/ A(s) - ua(s) ds = 0.
o I'p

~ d
Therefore, for any choice of w, A € H! (]Rd)

J(Q) = J(ug, Q) = £ (Q uo, W, X) , (1.46)

and
D.J(Q)(0) = ddo.c (20, 105, %, X) (8) = ;9/: (20,10, %, ) (8) + ;A/: (2,10, %, ) (uo'(8))
(1.47)

where ug/(8) € L2(Q)? is the Eulerian derivative of the displacement field as introduced in
definition [L13}

The equation for the adjoint state derives from a suitable choice of W and X that cancels g—%
when evaluated in U = ug. Differentiating the Lagrangian and integrating by parts, we obtain

O (0,00, %, 2)(v) = [ (Vio(ua(x) v + ¥ j1(Vua(x) - V) dx
Q

+ A(s) - v(s)ds — /QAVV(X) : Vw(x) dx

I'p
_ /Q (Vo) + div(ATV®) — div(V ji(Vug))) - vdx (1.48)
+ (V j1(Vug) — ATVW) n(s) - v(s)ds
I'nUT

+ /F ((v51(Vuo) - ATYR) n(s) + A) - v(s)ds.

From equation l) we deduce that the values of W and X such that the derivative %

d
vanishes are wq solution of equation (1.36)), and any Aq € H! (]Rd) such that

Ao = (ATVwq - Vji(Vug) ) n on I'p.
By evaluating the Lagrangian in w = wq and )\Q, the partial derivative g

ﬁ in equation
vanishes. Since, for tha sake of simplicity, we assume that all admissible shapes in S,qm share
the portion I'p of their boundary, we restrict the field of admissible deformation fields to

Oudm = {HEWLOO (Rd)d : 6 =0o0n FD}.
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By applying proposition and considering only deformations 0e Oudm , the shape deriva-
tive of J in €2 becomes

DJI(9)(®) :;;a (Qp, 10, wa, Aa) (8) = /F o () + 51(Vua(:0)) (8- w) dx
+ . (£(x) - wo(x) — AVug(x) : Vwg(x)) (6 - n) dx (1.49)

ow g N
—l—/FN <an‘g+8n-w+H(g-w)> (0 -n)dx.

We remark that Céa’s fast differentiation method yields the same surface expression for the
shape derivative as equation . However, this method is purely formal and assumes that
the state ug and the objective functional are regular enough to allow for the definition of the
Lagrangian on the appropriate spaces as well as the Eulerian derivative.

1.3 A gradient-based algorithm for shape optimization

1.3.1 Level-set method and signed distance function

In order to solve numerically a shape optimization problem, it is necessary to represent and
discretize the structure at each step of the optimization algorithm, and to be able to deform it
in accordance to a given deformation field 8 : R — R¢,

One possible approach consists in representing the structure explicitly by an unstructured
mesh and advect its vertices according to the deformation @ (see [198, Chapter 7] or [184]). Let
Ta be a mesh discretizing the shape . The mesh Tq, discretizing Qy = (I + 0)Q2 would share
its connectivity with 7g, and its vertices x}, ..., x/ would be obtained by the displacement of
the nodes x1,...,xy of 7o by 6

x; = (IT+ 0(x;))x; for all nodes x; of Tq.

The main benefit of this approach is the direct access to the discretized domain. In particular,
the solution of boundary value problems on ) is made significantly easier since the boundary
regions are explicitly defined, and the PDE problem can be solved numerically on 7 by the Finite
Elements Method. Despite its simplicity, this technique is prone to the degradation of the mesh
over few advection steps ([91) Section 3.2] and [41]), and it requires frequent remeshing in order
to avoid the presence of ill-shaped elements. Moreover, a mesh deformation technique would not
be able to deal with topological changes in the shape during the optimization process, since it
would require the creation or deletion of some edges or elements around the boundary. Different
approaches address these issues, like the partition of the mesh displacement into multiple steps
alternated with frequent partial remeshings [36], or the Deformable Simplicial Complex (DSC)
[182, [72] [71]. It is worth to remark that, contrarily to the simple nodal displacement method,
the DSC performs frequent remeshings and allows for topological changes in the structure.
Another approach consists in representing the density field by a suitable Non-Uniform Rational
Basis Spline (NURBS) as proposed in [I85] [49], defining a natural sharp boundary between the
interior and the exterior of the structure.

A different technique relies on the introduction of a level-set function which provides an
implicit representation of the structure. The level-set method has first been introduced in the
domain of fluid mechanics [I93], but has proven its versatility for shape optimization in several
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different contexts (see e.g. [230) 194, 253 19] for early applications). Refer to [247] for a
comprehensive review of the level-set method, and [I3], 98, [84] as examples of applications in
shape optimization.

We consider the notations adopted in [13], 248, 112} [10T].

Definition 1.16 (Level-set function). A level-set function representing the open domain § is
any real-valued continuous function ¢q such that

pax) < 0 if xe€Q,
pax) = 0 if xe€0Q,
pa(x) > 0 if xeRI\Q.

The function ¢q encodes implicitly the shape Q in R% and the level-set representation
allows to account for variable domains. Let @ be a time-dependent vector field that we suppose
to be Lipschitz continuous in space at each instant ¢ € [0,7] and such that |6(¢) < 1

||1,oo
d
We suppose also that the mapping t + (t) € WL (Rd> is differentiable, and we denote

V(t,x) the Eulerian derivative of the vector field 8 at the time t € [0, 7] in the position x € R
Let Qg) = (I+6(t)) Q2 be the domain obtained by applying the deformation field 6(t) to the
original domain 2, and $0p,, the corresponding level-set function. If the velocity field V is
known in [0,7] x R?, the function ¢ﬂo(t) can be computed by solving the following advection
equation

{ B 600w + V(%) Vog,, = 0 in (0,7] x R?, (1.50)

D0, (x) = o¢a(x) in R%.

If Qg4 is of class C!, it is possible to define a normal vector n(t,s) for each t € [0,T] and

s € 0Qg(y). Thus, if there exists a scalar function v : [0, T] x R¢ — R such that the advection

field can be written as V(t,s) = v(t,s)n(t,s) for all t € [0, 7] and s € 9g(4), the equation (1.50)
can be replaced by the Hamilton-Jacobi equation

800, + (%) HWQM . 0 in (0,7] x RY,
ng9(0) (X) = ¢Q(X) in R4,

For numerical applications, the level-set function is considered to be defined on a bounded
computational domain D C R? The library advectio [56], part of the ISCD toolbo is
the main tool used in the present thesis for the solution of the advection equation (|1.50) on an
unstructured mesh. Different numerical approaches to the solution of the advection equation
are provided in [I50, 62]. As remarked in [56] [I0I], the problems and are not
well-posed on a bounded domain without a re-entrant boundary condition to account for the
values of the level-set function outside D. For further information on the boundary conditions
for the Hamilton-Jacobi equation we refer to [78) [40)].

As pointed out in [192, [70], multiple solutions of the advection equation can result in a
level-set function that is locally too flat, which can cause problems in numerical applications.
Hence, there is a necessity to update the level-set ¢ every few iterations in order to preserve its
quality. Given a domain Q € R, there exist infinite level-set functions encoding the shape Q.
A function of particular significance in the context of shape optimization is the signed distance
function [228], 18, 90, 113}, 94].

(1.51)

"https://github.com/ISCDtoolbox/Advection
Zhttps://github.com/ISCDtoolbox
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Definition 1.17 (Signed distance function). For an open domain Q C R?, the signed distance
function dg : R* — R is a real-valued continuous function such that
inf X—S if xé&Q,
do(x)= | Mlsconlx sl i x g (1.52)
—infsepn [|x — 8||ga if xeq.

At first, we remark that the function dg is a level-set function for 2 according to [1.16] since
do(s) = 0 if s € 0€2. Moreover, the signed distance function is 1-Lipschitz continuous [100} 92]
and, thanks to Rademacher’s theorem [I110, Chapter 5], it is differentiable almost everywhere.
Let us denote Y the skeleton of €, that is the set of points in R? where the minimization
problem mingegq || — s||ge admits multiple minimizers. For any point x € R?\ $q, we denote
pa(x) € 052 the projection of x onto 0€, that is the argmingecpq ||x — s||ge. An example of the
signed distance function representing a bounded domain in R? is reported in fig.

VP v A 3
-4
&4 —0
—4
L -8
(a) Domain Q included in a square box D. (b) Representation of the corresponding signed distance

function do. The isoline do(x) = 0 is marked in black.

Figure 1.1: Representation of the signed distance function for a domain {2 in a computational
domain D C R2. The signed distance function dg has been computed numerically using the
library mshdist.

For regular domains, it is possible to characterize the signed distance function by the following
result [112, Proposition 1.10].

Proposition 1.18. Let Q C RY be a C' domain. Then, for all x € R\ Xq, the signed distance
function dq is differentiable in x, and its gradient is equal to

Vdg(x) = n(pa(x)).
Moreover, dq satisfies the eikonal equation

{ IVdo(x)||ga = 1 for all x € R\ q, (1.53)

do(s) = 0 for all s € 09).
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Proposition highlights two important properties of the signed distance suncion as level-
set for shape optimization. At first, it provides an easy method to compute an extension of the
normal vector n to the entire space R?. Secondly, since the norm of the gradient of the signed
distance is equal to 1 almost everywhere, taking dq as level-set ensures that it is never too flat
to cause numerical issues.

It is clear that, if an advection field @ is applied to a signed distance function dg, the resulting
mapping would be a level-set for the perturbed domain Qg = (I 4+ 6)Q2, but it would not be a
signed distance anymore. Thus, it is necessary to recompute the signed distance function after
any perturbation of the domain in order to preserve the properties proven in proposition [1.18

In the literature, two main families of approaches are proposed for the numerical computation
of the signed distance function. The first group, which includes the Fast Marching Method
[228, 229, 119] and the Fast Sweeping Method [263, 202, 35] aim to solve directly the stationary
eikonal equation and rely on the information on the distances between the different
elements of the mesh. The second group ,which includes the techniques proposed in [235] 92],
relies on the following result on the unsteady eikonal equation (see [92, Theorem 2.5], proven in
[32, Section 2.2.2]).

Theorem 1.19. Let ¢ : RY — R be a level-set function for an open domain Q C R, We define
the unsteady eikonal equation, also called the reinitialization equation [32] or redistanciation
equation [92, [112], as the following Hamilton-Jacobi PDE:

% (t,%) + sign (o)) (| Vo(t, ) [z — 1) = 0 forallt>0x RSy o)
0(0,x) = ¢qo(x) for all x € R4, '
Then, the only viscosity solution of (1.54) is ¢ : RT x R = R defined as
ot x) - | i@t infly< (siEn@aCoiale +y) +¢) i 0<t<ldaGOl, |

do(x) i t>[da(x)].
Moreover, the signed distance function is the steady-state solution of equation .

In this work we used the open-source library mshdistE| developed as part of the ISCD toolboz
and detailed in [92]. The mshdist software relies on the solution of the unsteady eikonal equation
to compute the signed distance function of domains discretized by body-fitted meshes.
Refer to [32] 100, 92] for further information on the eikonal equation for the identification of the
signed distance function.

1.3.2 Implicit and explicit shape representation

Let Suqm be a class of domains in R%, Q an open domain in Saqm, and D a sufficiently large subset
of R% such that all elements of Syqm are contained in D. We suppose also that all elements of
Sadm share the portion I'p of their boundaries, and that I'p is included in 0D. Let us consider a
shape optimization problem in the form . As we remarked in section if ) is explicitly
discretized by a mesh 7Tq, a suitable numerical method can be applied to solve the state and
adjoint problems on 7. Clearly, this consideration is not limited to elliptical problems, but can
be extended to any kind of well-posed PDE constraint.

The solution of the state equation is more subtle if the domain €2 is encoded implicitly by a
level-set function ¢q defined on D. Let Tp be a fixed simplicial mesh covering the computational

3https://github.com/ISCDtoolbox/Mshdist
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box D. The numerical solution of the state problem is complicated by the fact that no mesh
covering exclusively €2 is readily available. The ersatz material approach is among the early
approaches to solve this issue [19], and consists in replacing the state problem defined in 2 with
the following relaxation on the entire computational box D.

—div(As(pa(x))Vu.) = f(xX)xa(x) in D,
(Ac(¢a(x))
(Ac(a(x))

Vu.)n = g on I'n,
Vu.)n 0 on 9D\ (I'p UTy),
u =0 on I'p.

(1.56)

where xq is the characteristic function of the domain €. The operator A, : R — R%*? in ([T.56))
is defined as
A=A+ (1—¢e)Axp+, (1.57)

where ¢ < 1 is a positive small parameter. A relaxed problem analogous to can be
formulated for the adjont problem .

Equation can be interpreted as an approximation of the state problem, where {2 is
surrounded by a light ersatz material approximating the void in D\ 2 [84]. The strict positivity
of € is necessary to assure the well-posedness of the relaxed state problem, but it introduces an
error in the computation of the state. As proven in [84, Theorem 1.8], the error on the solution
of the state problem can be bounded by

|lug — ua||H1 <C(Q,D,f,g)e, (1.58)

where C'(Q2, D, f, g) is a constant depending only on the shape of the domain and the computation
box, and on the volume and surface loads, and ug is the exact solution of the state problem.

In numerical applications, the value of ¢ is subject to a trade-off. Equation encourages
to decrease its value, in order to compute a better approximation of ug. However, a too small
value for € can degrade the conditioning number of the stiffness matrix in the finite element
system, and make its numerical solution more difficult to achieve.

As highlighted in [I01, Section 2.2], the error between u. and the exact solution ug is not
the only difficulty introduced by the ersatz material technique. Indeed, since €2 is included into
the computational box D, a finite element problem formulated on 7p is computationally more
expensive than one defined on a smaller mesh covering only (2 because it requires the computation
of a fictitious solution far outside Q. Moreover, if ¢q is discretized as a P! function, the elliptic
operator A.(¢pq(x)) assumes an intermediate value between A and €A in the vicinity of the
isoline ¢q(x) = 0, which corresponds to the boundary of Q. This last issue implies that the
error on the numerical solution of can be significantly larger than the one on the continuous
solution u.. This problem is particularly relevant in the context of shape optimization since the
surface expression of the shape derivative of a differentiable functional depends on the value of
the state and its adjoint on the free boundary I'g. The immersed interface approach [254] 230]
does not require any modification of the fixed mesh 7p, and deals with the transition between
the interior and the exterior of ) by suitable jump conditions. The LEVITY algorithm for
shape optimization [77] relies on the ersatz material approximation and on the definition
of a metric on the computational box D as function of the level-set function and calls for a mesh
adaptation step only when a criterion on the convergence of the objective function.

A different strategy addressing all these issues consists in replacing the fixed mesh Tp by
a simplicial mesh 7p o where Q is explicitly discretized as a submesh 7. Multiple approaches
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have been proposed in order to extract an explicit discretization 7p o of €} from a mesh 7p and
a level-set function ¢gq.

The XFEM method [107,249] consists in cutting the elements of 7p crossed by ¢q, obtaining
an explicit representation of 2. An important drawback of this approach is the fact that cutting
the elements of Tp may give rise to thin, low-quality elements in 7p o around the isoline ¢ (x) =
0, affecting the numerical solution of the state and adjoint problems. The CutFEM method
[59, 250] addresses the low-quality issue of the mesh near the boundary resulting from the
XFEM method by refining the mesh around the interface between the interior and the exterior
of Q.

In this thesis we considered the approach proposed in [88, 13, 89], which relies on a local
remeshing of Tp around the isoline ¢q(x) = 0 every time the level-set function is advected, in
order to construct a body-fitted mesh for the domain €. Let Tp o be a mesh for D where a

domain € is explicitly represented as a submesh, and let 8 € W (D)d a Lipschitz continuous
vector field. We suppose that the domain €2 is represented by a level-set function ¢q discretized
on Tpa. We aim to obtain a mesh 7pq, where the perturbed domain Qy = (I + 0)Q is
explicitly discretized. We start by solving the advection equation in order to compute a
level set function ¢q, for the perturbed domain on the mesh 7p q,. Then, a local remeshing
is performed around the isoline ¢q,(x) = 0, producing a body-fitted mesh 7p q, covering the
entire computational box D. An example of the advection and remeshing process is presented
in fig.

The local remeshing is performed using the implicit domain meshing option of the open-
source mmg platfornf’| [89, 37], in 2 dimensions (mmg2d_03) and 3 dimensions (mmg3d_03). The
implicit domain meshing of mmg relies on the isovalue discretization algorithm, which takes as
input an unstructured simplicial mesh 7p and a P! level-set function ¢q defined on the nodes
of Tp, and returns a simplicial mesh 7p o where the domain €2 is explicitly represented by a
submesh 7. The execution of the isovalue discretization algorithm can be adjusted by the
following options:

e hmin and hmax are real values defining the minimal and maximal authorized length of an
edge in the mesh;

o hausd defines an upper bound on the Hausdorff distance between an edge (in 2D) or
a triangle (in 3D), and the ideal continuous boundary 0f2, in order to assure a good
representation of the domain §2;

o hgrad is a real value, larger than 1 (typically around 1.4), that controls the ratio between
adjacent elements of Tp o, in order to avoid flat elements, and assure the overall quality
of the mesh.

1.3.3 Shape gradient and the Hilbertian regularization-extension

In order to apply a gradient-based algorithm to shape optimization problems, it is worth recalling
the definition of gradient in Hilbert spaces in analogy with [114]. Let (#,(-,-),,) be a Hilbert
space, and J : H — R a function that is Fréchet differentiable in x € H, and its derivative is
denoted as DJ(z)(-). The derivative of J in z is a continuous linear functional defined on H.
Thus, DJ(z) belongs to the dual space of H

DJ(z) e H* ={L:H — R : L linear and bounded}.

“http://www.mmgtools.org
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(a) Mesh Tp o fitting the circle © defined by a (b) Definition of a displacement field 0 for the
level-set ¢q, . level-set ¢,

(¢) Advection of ¢ by the field 8 to the new (d) Body-fitting mesh 7p. o, for the shape de-
level-set function ngve fined by the advected level-set.

Figure 1.2: Level-set advection and mesh adaptation for a domain {2 and a given displacement
field @ using mshdist, advect, and mmg.

An element y € H is said to be a direction of descent for J in z if DJ(x)(y) < 0.
The gradient of J is an element of the Hilbert space H, uniquely identified by Riesz’s iden-
tification theorem as the only element V.J(x) of H such that

(VJ(x),y)5 = DJ(x)(y) for all y € H. (1.59)

We suppose that z is not a stationary point, and thus DJ(x)(-) is not identically equal to 0. An
evident direction of descent is given by —7V.J(z) for any 7 > 0, since

DJ(z)(—=7VJ(z)) = =7 (VJ(x),VJ(z))y = —T ||VJ($)H;2L£ < 0.
Similar concepts can be introduced for smooth functions defined on a Riemannian manifold

[104, 160]. Let M be a differential manifold endowed with the Riemannian metric g. We recall
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that a Riemannian metric on a differential manifold is a mapping that associates any point
x € M with an inner product (-,-), ., defined on the tangent space T; M [104] Definition 2.1].
Thus, if J is a function defined on M which is differentiable in z, its derivative D.J(x) belongs
to the dual space (T,;M)*, and its gradient V.J(z) is the only element of T, M such that

(VJ(@),Y)y(z) = DI (2)(y) for all y € T, M. (1.60)

We suppose that the derivative of J does not vanish in x. Then, any element of T, M in the
form —7VJ(x) is a direction of descent for J in x € M, if 7 > 0.

In the context of shape optimization introduced in section the space of definition of
a shape functional J is a class of open Lipschitz continuous domains S,qm. We suppose that
there exists an open bounded domain D C R? containing all admissible domains. The class
Sadm 18 not even a vector space, and thus it cannot be provided with a Hilbertian structure.
The idea proposed in [223] and expanded in [224] [114] consists in considering S,qm as a smooth
manifold such that, for any domain € € S,qm, the tangent space at 2 coincides with W1 > (D)d.
Therefore, the shape derivative of J in Q as introduced in definition 5| belongs to the dual
of the tangent space of M in . However, Wh> (D)d is not a Hilbert space, and the gradient
corresponding to a shape derivative cannot be immediately identified as in equation (|1.60)).

The solution proposed in [I14] consists in identifying a suitable Hilbert space H C W (D)d
endowed with the inner product (,-),,. By limiting the set of admissible deformation fields to
H, the restriction of DJ(Q) to H is associated to a unique gradient V.J(€2) € H such that
equation holds for any y € H. The choice of the Hilbert space is not unique, as remarked
in [58, 08, [IT4]. One possibility is to identify H with the Sobolev space H* (D) with the standard

inner product, with £ > 1 + %l. Indeed, thanks to the Sobolev embedding theorem [2, Theorem

4.12, part I}, H* (D) is embedded into W (D)d.

A more common choice in literature consists in considering the space H' (D)d, with the inner
product

(o (6.6 (60.6), = [ (6-6++°V6: Ve ax

where the constant v is a positive regularization parameter (see [19, 1], 224, 15, 113]). In
numerical application, « is usually taken as three times the minimal length of the edges of the
mesh covering D [114].

The space H (D)% is not a subspace of W (D) However, if {2 and J are regular enough
to satisfy the hypotheses of theorem |1.7] the shape derivative of J can be written as

~ o~

DJ(Q): 0 — - v7(60 - n), (1.61)
for some v+ € L2 (09), which is a continuous linear form on H! (Q) by the trace theorem [218|

Theorem 7.85]. Therefore, the shape gradient V.J(€2) if the only element of H! (D)? such that,
for all @ € H! (D)%,

(vi©).0) - /m v=(0-n)ds. (1.62)

The use of the shape gradient defined as in is convenient to solve a few numerical
difficulties. Firstly, the gradient v.J (Q) is not bounded to 912, but is defined on D, extending
the vector field v sn to the entire computational box. Secondly, the shape derivative as defined in
can be affected by regularity issues [33] [19, [98] [I0I] that may compromise the numerical
solution, while the gradient is smooth by definition. One cause of the irregularity in the shape
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derivative can be the presence of sharp corners in the domain €. Another source of irregularity
is linked to the numerical computation of v Indeed, let us consider J to be a PDE-constrained
functional as in , which depends on a state ug solving the state problem . If Tp
is a mesh covering the computational box D and ug and the corresponding adjoint state wgq
are discretized as P!, then normal velocity v in the shape derivative holds only a PV regularity
[101], Subsection 2.2.4]. Moreover, as remarked in [98], the vector velocity field vsn is even
less regular than the normal velocity in presence of two separate boundaries tending to merge.
The use of a H! shape gradient VJi (Q) avoids the regularity issues and ensures better stability
in the numerical solution [I98]. Thanks to these two aforementioned properties, this method
to compute a shape gradient is known in literature as the Hilbertian regularization-extension
technique [98], 112, 14, [T0T] or smoothing [58].

A final advantage of the Hilbertian regularization-extension method is the possibility to
enforce non-optimizable boundaries in the shape optimization process. Let us consider that
all admissible shapes share a portion I' of their boundary, or that there exists a subdomain Q
contained in all admissible shapes in Syqm, [91]. In order to enforce the fact that T and Q are
not altered by the advection field, it is sufficient to consider the Hilbert space Hiﬁ C H such
that

iﬁ:{Be’H : 0:0onfuﬁ}.

It should be remarked that the computation of the shape gradient depends on the choice of
the Hilbert space H extending W1 (D)d. However, regardless of the choice of H, the vector

~

field —VJ(Q) is always a direction of descent for J in €.

In conclusion, a gradient-based optimization algorithm for the solution of the shape opti-
mization problem ([1.25) can be summarized as in algorithm

Algorithm 1 Procedure for the solution of the shape optimization problem (|1.25]) by a gradient-

based method.
Require: a simplicial mesh 7p for the computational box D
Require: a level-set ¢go representing the initial domain Q° C D on Tp
Compute a body-fitted mesh Tp, o
Compute the signed distance function dgo
Solve the state equation for ugo
Compute the value of the objective functional J(ugo, %)
while n < nyax Or a given convergence criterion is satisfied do
Solve the adjoint problem for wgn

~

Compute the shape derivative D.J(Q")

~

Compute the shape gradient V.J(2") by a Hilbertian regularization-extension procedure
Define a deformation field 8" = —7"V.J(Q"), where 7" is a small discretization step
Advect dgn by the vector field 8™ in order to obtain a new level-set pqn+1
Compute a body-fitted mesh Tp gn+1
Compute the signed distance function dgn+1
Solve the state equation for ugnt1
Compute the value of the objective functional J(ugn+1, Q")
n<—n-+1
end while
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1.3.4 Null space optimization algorithm

Thus far we considered shape optimization problems where the shape € is subject to no explicit
constraint, and the state is defined by one or more partial differential equations. In practice it
is often necessary to complete the optimization problem with one or more constraints.

Multiple approaches have been proposed for the solution of constrained optimization prob-
lems in the form of problem outside the scope of shape optimization. Among the gradient-
based algorithms we mention the augmented Lagrangian [5I], penalty methods [117), Section
12.1], interior point algorithms [200], the method of moving asymptotes [240], and techniques
based on an Ordinary Differential Equation (ODE) like Yamashita’s method [258], and its off-
shoots [221), 39, 114]. In this thesis we focus on the null space optimization approach first
introduced by Feppon, Allaire and Dapogny in [114].

Equality constraints

In order to understand the null space optimization algorithm, we start by considering a generic
optimization problem in the form , where the control variable x belongs to a subset Xyqm
of the Hilbert space (H, (-, "))

The main idea behind ODE based methods consists in the definition of a dynamical system on
H x [0, 400), whose solution converges to the solution of the underlying optimization problem for
t — oco. Yamashita’s gradient flow technique [258] has been developed for optimization problems
featuring only equality constraints. Inequality constraints can be taken into account by slack
variables [221], or by suitable adaptation of the dynamical system. In particular, in this section
we present the null space optimization algorithm as presented by Feppon, Allaire et Dapogny
in [I14] and its python implementation]

At first, let us consider an optimization problem featuring only Ng equality constraints

Findz e H

minimizing the objective function J(x) (1.63)
under the constraints '

G(x) =0.

The function G : H — RMe encodes Ng equality constraints, and we suppose that the
objective and the constraint functions to be differentiable in the entire space H. We denote
DJ(x) and DG(z) the respective sensitivities, and V.J(x) and DG(x)7 their transpose with
respect to the inner product (-, -)4,.

The vector G(x) satisfies the Linear Independence Constraint Qualification (LICQ) condition
in € H if DG(z) has full rank (or, equivalently, if DG(z) DG(z)7 is a full-rank Ng x Ng
matrix). Let xo be a point in the Hilbert space H. The gradient flow ODE associated with the

optimization problem (1.63) is

{ &tt) = —as€,(@) - acbalx),  forte (0,+00) (1.64)

z(0) = o,

where a; and ag are positive parameters. The terms & ;(x) and &5(z) belong to H and are
defined as the null space and range space directions respectively. It is not necessary for zy to

Shttps://gitlab.com/florian.feppon/null-space-optimizer

48


https://gitlab.com/florian.feppon/null-space-optimizer

1.3. A gradient-based algorithm for shape optimization

satisfy the equality constraints G(z) = 0. For any point « € H that satisfies the LICQ condition,
the null space and range space directions are defined as

¢,(x) = (1-DG7 (DG DG7)'DG) VJ(x),

1.65
£o(z) =DGT (DG DGT)"1G(z). (165

As proven in [I14] Section 2|, —€4(z) is a descent direction for the vector of the violations of
the equality constraints, and it belongs to the range space of DG(z) for all € H respecting
the LICQ condition. Moreover, the null space direction &€ ;(x) is the least-square approximation
of VJ(x) onto Ker(DG(x)), and can be seen as

£,(z) =VJ(z) + DGT A(z).

We denoted A(z) € RNG the vector of the Lagrange multipliers for the orthogonality constraint
between £ ; and the range space of DG, and it solves the optimization problem

A(z) = arg min HVJ(m) + DGT)\H . (1.66)
AERNG H

Problem can be solved numerically by dedicated solvers like cvxopt{]24], 0sqe{[234],
or IPOPTF_;I [252]. The aforementioned two properties ensure that the vector of violation of the
constraints G(z) tends to 0 along the trajectories of and that, when G(z) is small enough,
the objective function J(z) decreases without affecting the decrease of G(z). The proofs are
provided in [258] and [114, Annex A].

Inequality constraints

The handling of the inequality constraints in the null space optimization algorithm is more
complex. We consider the generic optimization problem

Find z € Xyqm

minimizing the objective function J(x)

under the constraints (1.67)
G(z) =0,
H(z) <O0.

simplifying the notation of problem . The functions G and H encode respectively Ng
equality constraints and Ny inequality constraints, and are supposed to be differentiable in the
entire space H.

At first, we number the equality constraints with indices from 1 to Ng, and the inequality
constraints from Ng + 1 to Ng + Nug. Let I = {1,..., Ng + Nu} be the set of indices of all
constraints, and C = [G", HT]T the vector obtained by the concatenation of all equality and
inequality constraints. A major complication related to the presence of inequality constraints
is the fact that an inequality constraint that is satisfied strictly in any z € H should not be
considered in the identification of the gradient flow in x, since they are satisfied everywhere
in an open neighborhood of x. In order to take into account only the inequality constraints

Shttps://cvxopt.org/
"https://osqp.org/docs/release-0.6.3
Shttps://coin-or.github.io/Ipopt/
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Figure 1.3: Representation of the space of phases R? for the problem of minimizing ||x||* under

the constraintsNHl —xp—we <3 and Hs : zy < 2. The sets of active constraints for the points
Pl, . ,P4 are I(Pl) = {1,2}, I(PQ) = {1}, I(P3) = {2}, I(P4) = {}

which are violated or saturated, an active-set methodology analogous to [39] is used. We denote
I(x) C I the set of all indices corresponding to the active constraints in z, which are all the
equality constraints and the violated or saturated inequality constraints.

I(x)={iel : i<Ng or Ci(x)>0}.
Moreover, we consider Cf(m) to be the vector of all active constraints in x, HI~($) the vector of
all active inequality constraints in x, and NNH(x) the number of active inequality constraints.

An example of the definition of active constraints is illustrated in fig. [I.3]

In this case, the vector CIN(x) is said to satisfy the LICQ condition in x if DCT(x) (x) has full

rank Ng + Nu(z), which is equivalent to require that (Dcf(x)(x) DC;(x) (.I‘)T) is an invertible
square matrix.
As for the equality constrained problem, we aim to define an ODE in the form

{ &t = —as€s(r) —acke(x),  fort € (0,+00) (1.68)

z(0) = xo,

whose solution converges towards the optimal solution of problem . We look for the
definition of a null-space and a range-space direction analogous to . Let us consider x € H
that satisfies the LICQ condition. The range-space direction &, is defined similarly to &, in
as

£o(z) =DCT (DC+ , DCL

—1
Z,,(DCy, DCT )7'Cy, (a). (1.69)

I(z)
Once again, —€~(x) is a descent direction for the violation of active constraints and it belongs
to the range space of DCT(m) (z).

The computation of the null space direction & ; is not obtained simply by replacing DG with

DCT(a:) in equation 1' since the projection of —VJ onto Ker(DCTI) (z)) may not be the

optimal direction for the solution of problem (1.67)), as shown by fig. Instead, we consider
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Figure 1.4: We consider once again the problem of minimizing HX”2 under the constraints
Hy:—21—29 <3 and Hs : 1 < 2. Constraints H; and Hs are active in P, and P» respectively.
The minimization of the objective and the satisfaction of the constraint are antagonistic in P,
so I(Py) = I(Py) = {1}. On the contrary, the improvement of the objective in P, does not
violate Hy. Thus I (Py) = {2}, while T (P,) = {}.

—&; to be positively proportional to the solution £* of the following constrained optimization
problem
Find £€* e H
minimizing DJ(x)&
under the constraints
DG(z)€ =0,
DH(2)¢ <0,
I€lly, < 0.
Instead of solving directly problem , it is suitable to consider its dual problem

(1.70)

Find A(z) € RNG and p(z) € Rﬁ;‘(’”),

VJ(z)+DGT X+ DHZ

1.71
M (1.71)

minimizing

.
under the constraints p > 0.

If z € H satisfies the LICQ condition, problem (1.71]) admits a unique solution [114], Propo-
sition 3.2]. Let us consider the set of indices I (z) C I (z) defined as

~)

(2)={iel(@) : i< Ng or p_yg(x)>0}, (1.72)

representing the subset of active constraints whose gradients are not aligned with VJ(z).
Then, if z satisfies the LICQ condition, the null-space direction &;(x) is defined as the

projection of V.J(x) onto the kernel of DCf(z) (), and can be expressed as

£,(z) = (]1 — DC}I(J:) (DC,, DCII@))*DCRI) (m)) VJ(z)

=VJ(z)+DG(z)T A=)+ DH; ()7 p(z).

(1.73)

o1



Chapter 1. Hadamard’s method for shape optimization

Moreover, the solution of problem ([1.70) is such that £*(z) = —&;(x)/ 1§, (x) |4

Discretization of the ODE

The null space optimization algorithm consists in a discretization of the ODE (|1.68)). Given
a time step At sufficiently small, the discretized dynamical system evolves according to the
following law

Az = (o &;(2") + ag Ec(a™)) forn e {1,..., Npax}
"t = 2" — At Az, forn € {1,..., Npax} (1.74)
.’EO = Xy.

The coefficients a; and a¢ are tuned throughout the execution of the optimization algorithm
as follows, in order to assure the normalization of the descent directions and avoid oscillations
after a large number of iterations (see [91])

Ay . B
n ) T& @y if n <m,
oy = M

J . _
(e ] R

o = min 7140 ac
c= v :
1€c (@)l
The terms Ay, Ac, @, and a¢ are fixed positive parameters.
An issue related to inequality constraints consists in the fact that the mapping of the active

set x> I (x) is discontinuous on the boundary of the admissible set of problem l’ Such
discontinuity can cause wide oscillations in the discretization of the ODE (1.68]) [I03]. The

authors of [I14] propose to introduce a vector of tolerances €(z) € RVNE®) defined as
€ = |VH;(x)|y4h for all i € I, (1.75)

where h is a positive parameter. In order to avoid oscillations near the border of the admissible
region, the set of active constraints I (z) is replaced by the set of active constraints up to ¢;

I.(x)={iel : i< Ng or Ci(z)> —¢}. (1.76)

Similarly, if I, () replaces I (z) in the solution of problem (1.71)) and denoting A(z) and p(z)
its solution, it is possible to define the subset I (x) C I (x) as the set of all active constraints
up to € which are either equality constraints, or whose gradient is not aligned with V.J(z)

I(z)={iel : i< Ng or pici ng(x)> tolLag}, (1.77)

with 0 < tolLag < 1. Thus, for the discretization of the solution of the ODE (|1.68]), the
null-space and range-space directions become

_ T =R T -1 .
£,.(0) = (]1 ~pcl, (c;, pCL ) Dcfe(x)) VJ(2), (1.78)
£c.e(¥) = DCLe()(DCli(z) DCLe()) ' Cra( (@), (1.79)

where I* (z) = I, (z)UI (z). In order to ease the computations, the expression (L.78) is replaced
by an equivalent formula

€je(r) =VJ(z)+ DGT A (z) + DHTE(m) (z) p (), (1.80)
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where the Lagrange multipliers solve the following problem

Card | H~ T
Find A(z) € RYG and p (2) € R ( e )>’
(1.81)

minimizing

VJ(z) + DGTA. + DHL (e

H
under the constraints p, > 0.

The size of the time step is adapted during the optimization algorithm through the use of a
merit function M, : H — R defined at each iteration n as

n

M, (2) = (J(@) + Gle) Acla™) + Hy 0 (@) k(@) + E (Cy ) ()8 @) C 0 ()

The square positive definite matrix S(z™) is defined as

-1
S(z") = (DHj oy (@") DHE 1 (2™)7 )

The merit function 9M,, is defined in such a way that its gradient computed in 2" is equal to
the increment Az™ of equation (1.74)). At each iteration of the algorithm, the merit function
computed in z"*! is compared with its value in 2™. If M, (z"+!) < M, (2"), the algorithm
proceeds to the next iteration. Otherwise, 2" *! is discarded and recomputed with a halved time
step At. This procedure is repeated until an iterate for which the merit function decreases is
found, or a maximal number of halvings k. is attained.

The null space optimization algorithm for the solution of problem can be summarized
as in algorithm [2| and requires the input of the following parameters:

o At (denoted dt in the python implementation) virtual time-step of the discretized ODE;

e Ajand A¢ scaling the null-space and range-space direction respectively in the definition
of the increment (in the implementation, the parameters alphaJ = A;/At and alphaC =
Ac /At are provided instead);

o 7 (itnormalisation) the iteration number after which the normalization of the null-space
step £ ; is no further updated;

o a¢ (equal to 0.9 in the implementation) minimal normalization term for the range-space
direction;

o the distance h used in the definition of the tolerance vector € (in the implementation is
given the parameter J = h/At);

e Mmax (maxit) maximal number of steps in the optimization algorithm;

o kmax (maxtrials) maximal number of halvings in the search for a suitable increment step.

1.3.5 Summary of the algorithm for constrained shape optimization

Having stated in the previous sections the definitions and the main results about shape deriva-
tives, we can now consider a more general shape optimization problem written similarly to
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Algorithm 2 null space optimization algorithm for the solution of a constrained optimization
problem in the form .
Require: a starting point 2% € H
Compute J(z°), G(2"), and H(x?)
while n < np.x do
Compute the vector of tolerances €
Identify the sets I (2) and I, (z™) of active constraints, and active constraints up to €
Compute the derivatives of the objectiveD.J(z™) and of the constraints DG (z"), DH(z")
Compute the gradients V.J(z"), DG(2™)7, and DH(z")7
Compute the range-space direction & ((z") by equation
Solve the problem to find the Lagrange multipliers A¢(z") and p(2™)
Identify the set I, (z™) of active constraints up to € non aligned with V.J
Compute the null-space direction £ (z™) by equation
Compute the increment Az™ = (o} &;(2") + ag §c(a™))
Compute the merit function and evaluate I, (")
k<0
while k < kjax do
Increment 2" = 2" + % Az
Evaluate 91, (2" 1)
if M, (2" 1) < M, (2™) then
break
else
Reject 2"
k< k+1
end if
end while
Accept 2"t
Compute J(z" 1), G(2"*1), and H(2" )
n+<n+1
end while

problem as
Find the admissible shape Q € S,qm
minimizing the objective function J(ug, §2)
under the costraints
G(uqp,?) = 0, (1.83)
{ H(ug, Q) < 0,
where the state ug € Yagm is solution
of the state problem f(y,2) = 0.

We consider S,qm to be a class of Lipschitz continuous open and bounded domains in R, The
functions G and H encode respectively Ng equality constraint and Ny inequality constraint,
and each one may depend on a state defined by a partial differential equation. For the sake of
simplicity, we consider a single state function ug for the objective and the constraints.

If the state problem f(y, 2) = 0 is well-posed for all Q € Syam, problem (1.83)) can be written
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in terms of the reduced functionals

Find the admissible shape 2 € Saqm

minimizing the objective function J(2)

under the costraints (1.84)
G@Q) = o,
H(Q) < o.

We suppose also that the state function f, the objective J, and the constraints are regular

enough to compute the shape derivatives DJ, DG and DH as continuous linear functionals on
d
the space of Lipschitz continuous vector fields W1 ]Rd> .

The null space optimization algorithm presented in section [I.3.4) can be adapted to shape and
topology optimization by considering the set of admissible shapes as a Riemaniann manifold,
whose metric is the scalar product associated to the regularization-extension procedure (see
[114, Sections 5| for further information). This approach has proven its efficacy in level-set
based shape optimization [I12] 188, [91]. Other techniques that have been used in the context of
structural optimization include the method of moving asymptotes for density-based approaches
to topology optimization [45] [I], and the augmented Lagrangian [19, 91, 261] for level-set based
optimization.

As remarked in [112] pg. 57], a shape optimization method based on Hadamard’s derivative
with respect to the domain should not allow for changes in the topology of the structure. Strictly
speaking, the shape derivatives introduced in definition [I.5] describe the sensitivity of shape
functionals with respect to small deformation which do not entail topological changes. However,
the discretized nature of the algorithm makes them possible, in particular the piercing and
disappearance of thin structures and the merging of two or more holes next to each other. Thus,
sudden variations and even increases of the value of the functional of interest should be expected
whenever changes in the topology occur during the execution of a shape optimization algorithm.

A shape optimization procedure can be developed by taking into account the definition of
shape derivative of section the discussion around body-fitting meshes of section the
Hilbertian regularization-extension procedure of section [1.3.3] and the null space optimization
algorithm, outlined in section [I.3:4] The structure of the shape optimization procedure consid-
ered in this thesis follows the structure outlined in algorithm |3} similarly to the sotutaﬂ platform
devised by Dapogny and Feppon [91]. A similar solution is provided by the OpenPiscﬂ software
[188] developed by Safran Tech and IRT System)qﬂ

“https://github.com/dapogny/sotuto
https://openpisco.irt-systemx.fr/
"Yhttps://wuw.irt-systemx.fr/

95


https://github.com/dapogny/sotuto
https://openpisco.irt-systemx.fr/
https://www.irt-systemx.fr/

Chapter 1. Hadamard’s method for shape optimization

Algorithm 3 Procedure for shape optimization based on the null space optimization algorithm,
using a level-set method and body-fitted meshes.
Require: a simplicial mesh 7p for the computational box D
Require: a level-set ¢qo representing the initial domain Q° ¢ D on Tp
Compute a body-fitted mesh Tp o
Compute the signed distance function dgo
Solve the state equation for ugoe
Compute the value of J(ugo, %), G(ugo, Q°), H(ugo, Q°)
while n < ny.x do
Compute the vector of tolerances €
Identify the sets of active constraints I (€2") as in (1.72)), and I (Q") as in (1.76)
Compute the adjoint states for the objective or the constraints, where necessary
Compute the shape derivatives D.J(Q"), DG(Q"), DH(Q")
Compute the gradients V.J(Q"), DG(Q")7, DH(Q")7 by regularization-extension
Compute the range-space direction 87 by
Solve the problem to find the Lagrange multipliers A¢(Q2") and p(2")
Identify the set I, (") defined in
Compute the null-space direction 6’ by
Compute the displacement field " = (o'} 077 + o 6¢)
Compute the merit function and evaluate 9, (2")
k+0
while k& < kjax do
Transport don by 2%0” to get a new level-set ¢gn+1 for Q" using advect
Compute a body-fitted mesh Tp gn+1 using mmg
Compute the signed distance function dgn+1 using mshdist
Evaluate 9, (Q"F1)
if MM, (Q" ) < 9, (Q") then
break
else
Reject Q7 +!
k+—k+1
end if
end while
Accept Q" Th gn+1, and dgn
Solve the state equation for ugn+1
Compute the value of J(ugn+1, Q") G(ugn+1, Q"), and H(ugnt1, Q1)
n<—n-+1
end while
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Chapter 2

A deterministic thermo-elastic
problem

All formulas in section 2.2 have been obtained in collaboration with Viacheslav Karnaev?], PhD
student at the university of Basel. The results on deterministic thermo-elastic coupling are part
of an ongoing work about shape optimization under uncertainties in a multiphysics context.
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2.1 Linear elasticity framework

2.1.1 Introduction to linear elasticity

The subject of the optimization of static structure modeled by the equations of linear elasticity
has been addressed since the early applications of the shape optimization algorithms (see [46, 47,
213, 210] for examples of density methods, and [17, 23], 205] for boundary variation methods). In
the recent years, shape optimization of mechanical structures has been studied for more complex
cases. Notable examples include the coupling with heat and fluid equations in a multiphysics
system [113], [112], the application to connected structures [205], 204], and the consideration of

12yiacheslav.karnaev@unibas.ch
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contact phenomena [101} [143] [3]. Plastic deformations have been taken into account in their
temporal dimension in [102] [10T].

The problems studied in part [[I] of this thesis consider elastic structure whose behavior is
modeled by Hooke’s linear elasticity equation, for which the displacement field in a mechanically
charged structure is linearly proportional to the applied force. In particular, we focus our
attention on the case of linear homogeneous isotropic materials. For further information on the
theory of linear elasticity we refer to [232]. The impact of thermal coupling and time-dependent
problems will be discussed in section

Let us consider a structure represented by a Lipschitz continuous bounded domain © C R?.
We consider its surface 92 to be divided in three disjoint parts with strictly positive measure:
I'p, I'n, and I'y. We suppose that the structure is clamped in I'p, and a force g is applied
on I'y. Moreover, the structure is subject to a volume force f. The forces f and g induce a
displacement of the structure represented by a vector field ug : Q — R%. In a steady problem,
the conservation of mechanical momentum yields the following system of equations

—div(e)= f inQ,
on= g on I'y, (2.1)
on= 0 on I'g, '
ug = 0 on I'p,

where o is the Cauchy stress tensor.

In the context of linear elasticity, the displacement is supposed to be small, and the stress
tensor is taken, according to Hooke’s law, as a linear function of the linearized strain tensor
€ (ugq) defined as
Vug + VUQT
— 5
The linear relation between the stress and strain tensors is the constitutive relation of the
material

g (UQ> =

o (ug) = Ce (uq). (2.2)

The expression of the fourth order elasticity tensor C depends on the material of the structure.
However, in order to ensure that the operator Vv — Ce (v) is uniformly elliptic and the elasticity
problem is well posed, the elasticity tensor C must fulfill the following three conditions [116] [157]:

1. Cijrr = Cpyij, ensuring that C is a symmetric operator;

2. Cijrr = Cjipg and Cyjpy = Cyjy, so that C is an endomorphism in the space of symmetric
matrices of order d;

3. there exist two positive constants x and K such that, for any d x d symmetric matrix
M,k (M:M) < (CM:M) < K(M : M), meaning that C is a strictly positive and
continuous operator.

Under the aforementioned hypotheses, equation (2.1)) becomes the equation of linear elasticity

—div(o(ug)) = f in Q,
oc(ug)n= 0 only, '
ug = 0 on FD.
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2.1. Linear elasticity framework

Problem ([2.3)) is written in weak form as

Find uq € H%D (€)% such that
for all v € H%D (Q)? (2.4)

/Qa(uQ):s(uQ):/Qf-v—l— 1“Ng-v.

The symmetries required for the fourth order elasticity tensor C limit drastically the num-
ber of independent components (6 for two-dimensional problems, and 21 for three-dimensional
problems). For homogeneous isotropic materials, the independent components of the elasticity
tensor are reduced to two. In this case C is written as function of the Lamé parameters A\ and
[ as

o (ug) = Ce (uq) = 2ue (ug) + A(divug)L (2.5)

In three dimensions, the Lamé parameters can be expressed in terms of Young’s modulus £ and

Poisson’s ratio v as
E Ev
T A= .
21 +v) (I+v)(1—2v)

In order to ensure the positivity and continuity of the elasticity tensor, the Lamé parameters
must satisfy the following two inequalities

>0, 24+ dA > 0.

We remark that the parameter A can technically be negative. However, it is positive for most
materials. The parameter p is also known as the shear modulus of the material, and it mea-
sures the ratio between the shear stress and the shear strain. Both Lamé parameters have the
dimension of a pressure.

The well-posedness of problem is a classical result (see [116] for a generic elasticity tensor
and [2I8, Section 9.3] for the homogeneous and isotropic case), and relies on Lax-Milgram’s
lemma and Korn’s inequality (see [I57, [73] and [2I8, Lemma 9.5]).

2.1.2 The mechanical compliance

A shape functional that appears very often in studies on shape and topology optimization of
elastic structures is the mechanical compliance, which is defined as the work of all forces acting
on the structure [6, Section 5.1]:

(?(Q):C(Q,ug):/f-ugdx+/ g - ugds. (2.6)
Q I'n

The expression of the compliance coincides with the left-hand side of the variational formulation
(2.4)), where the displacement ug € HILD () is taken as test function. Thus, the compliance can
be written as twice the total density of the elastic energy in the structure

C(Q,u0) = /Qa (ug) : € (ug) dx, (2.7)

which is a quadratic function of the displacement ug. Expression highlights the interpre-
tation of the compliance as the integral over the volume of the structure of the elastic energy
induced by the forces f and g. As remarked in [6l [101], a large value of the compliance implies a
high transfer of energy to the domain, and thus a significant deformation. Thus, the compliance
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Chapter 2. A deterministic thermo-elastic problem

can be interpreted as a measure of the flexibility of the structure with respect to the applied
loads f and g.

An important property of the compliance as a differentiable shape functional is the fact that
it does not require the computation of an adjoint state for the formulation of its shape derivative.

d
Indeed, let § € W1 (Rd) be a Lipschitz continuous vector field such that [|0]|; ., < 1 and
0 = 0 on I'p. The mechanical compliance on the deformed domain Qg = (I + 0)Q is
C (9071199) :/Q a§<u99) : €§<u99> dx
0

T . 2 ~

= ( (V~UQ0 : V;UQQ + V§UQ0 : V’}‘EUQB ) + A (le; UQB) ) dx
(2.8)

_/( viad (1+ Vo)™ :vad (1+ve) ' +vad (1+ve) "' : ([1+ve) T (Vﬁg)T)

+ (vih 1+ Vo)) ) det (I + V)| dx,

where ug, is the solution of the elasticity equation on the deformed domain, ﬁ% =ug, o
(I+0) its push-back on the reference domain, and the index "X" under the differential operators
indicates that they are computed with respect to the perturbed coordinates. By differentiating
equation with respect to € and using the symmetries of the elasticity tensor we obtain

DC()(8) = / 1 (Viag(0) : Vug + Vig(8) : Vug™ — VugVé : Vug — VugV : Vug") dx

+ 2/ ( (div g (0))(divug) — (Vug : V@T> (div UQ)> dx + /Q(O' (uq) : € (un))(div 5) dx

_ 2/0 (10(8)) :e(ug)dx—Z/U(uQ) ) dx—l—/(a’ (ug) : € (u0))(div ) dx.
Q Q Q
(2.9)
The equation solved by the Lagrangian derivative is found by differentiating the variational
form of problem 1) For any v € H%D (Q) defined on the reference domain, the weak form of
the state equation is

/ o(ug,) : ex(vo(I+0) ) dx= [ f(X)-vo(d+8) ' dx+ (%) vo(I+0)"'ds
Qo Qo (I+6)I'n

which, transported on €2, yields
/0' (v): (V4 1+ VO) ™) fdet (I + VO)| dx
Q

(2.10)

:/fo(1+9)-v|det(]1+v0)y dx+ [ go(I+6)-vlacr(I+6)ds.
Q 'y

By differentiating both sides of equation ([2.10]), we obtain the following expression

/Q o (v): (Viag(®) ~ VugV0) dx + /Q (o (v) : € (u0))(div §) dx

- /Q (VE0 v+ (f-v)(div0)) dx+ [ (Ved- v+ (g v)(divr, 8)) dx.

I'n
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2.1. Linear elasticity framework

Since the equation above holds for any test function v € H! (I'p) 2 and thanks to the symmetry

o~

properties of the elasticity tensor, the following variational formulation for g (@) holds

Find 1uo(0) € H}._ (2)? such that
for all v € Hp_ ()

/Qa (60(8)) :e(v)dx = /Qa (v): (VuaVo) dx—/Q(cr (v) : & (uq))(div @) dx

+ / (Vf@ —|—div(§)f> -vdx+/ (Vg§+ diVFN(a)g) - vds.
Q I'n

(2.11)
By choosing ug as test function, we obtain the term with the Lagrangian derivative of the
displacement of equation on the right-hand side of the equation in (2.11)). Thus, it is
possible to formulate the shape derivative of the mechanical compliance without the need of an
adjoint state

DE(Q)(8) = f/Q(a (ug) : € (ug))(div8) dx
R R R R (2.12)
+2 /Q (Vfa + div(o)f) ugdx + 2 /F (Vgo + divp, (0)g) -ug ds.

N

If Q is a C! domain, the hypotheses of theorem hold, and the shape derivative of the com-
pliance can be written as

DE(Q)(8) :/F (Bn) (< (ue) ¢ £ (ue) + 2f - ug) ds
N Bug og (2.13)

+H(g- UQ)> ds.
I'n

2.1.3 The von Mises criterion

Let us consider a structure covering a domain {2, composed of a linear elastic, homogeneous
and isotropic material, characterized by the Lamé parameters A and . A material can lose its
elastic properties and assume a plastic behavior if it is subject to a sufficiently intense stress.
Notable aspects of plastic deformation are the non-linearity of the relation between stress and
strain, and the fact that the structure does not return to its initial configuration once the
mechanical load is removed. These phenomena can be explained by permanent modifications in
the crystalline structure of the material. Therefore, plastic deformations are generally avoided
in many industrial applications, since they can entail a degradation of the material and of its
elastic properties.

A classic behavior of an elasto-plastic material subject to uniaxial tensile loading is repre-
sented in the diagram of fig. If a sample is progressively stretched, the strain-stress relation
remains linear until the stress reaches the yield point oy. After this threshold, plasticity be-
havior appears and the relation between the stress and the strain becomes non-linear (we refer
to [145] for a detailed description of the non-linear phenomena). If the sample is stretched even
further, it may break once the strain reaches the fracture point in the diagram. Otherwise, if
the sample is released past the yield point, it does not return to the initial configuration, but it
maintains a residual strain.

In order to describe the limit of the elastic behavior of materials for two or three dimensional
deformations, we introduce the decomposition of the stress tensor as the sum of a hydrostatic
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Figure 2.1: Example of a stress-strain curve for an elasto-plastic material subject to uniaxial
strain.

and deviatoric component
o (ug) = onyd (ug) + op (un), (2.14)
where 1
Oyd (ug) =1 7 tr (o (ug)), op (ug) = o (ug) — oHyd (un). (2.15)
The hydrostatic component identifies the mean normal stress exerted in each point, while the

deviatoric part is related to distortion [31]. The same decomposition can be applied to the strain
tensor € (uq) = enyd (un) + €p (up):

etya (ug) = ]Ié (divug), ep (ug) = £ (ug) — emya (ug).

For linear homogeneous isotropic materials, the tensors ouyq (un) and op (ug) can be expressed
in terms of the Lamé parameters as

21 . 2u
OHyd (ug) = (d + A) (divug) I, op (uq) = 2ue (ug) — v (divug) I = 2uep (ug).
(2.16)
Thanks to the orthogonality between the identity tensor and the space of traceless tensors,
the elastic energy density U in each point of a loaded elastic structure can be written as the
sum of the dilatation and distortion energy densities Upyq and Up as

1
U(UQ) = 5 o (UQ) L E (UQ) = UHyd(UQ) + UD(uQ) (2.17)
in each point of €2, where
1 1
UHyd(UQ) = 5 O Hyd (UQ) * €Hyd (UQ), UD(UQ) = 5 oD (UQ) L €D (UQ)

Historically, the von Mises stress has been developed in the context of plasticity criteria [145],
Section 1.4.4]. The intuition of the dependency of plastic deformation from the deviatoric part
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2.1. Linear elasticity framework

of the stress tensor emerged in England in the nineteenth century. The idea was then adopted as
an hypothesis for subsequent plasticity criteria, like Tresca’s and von Mises’, and confirmed by
experiments. It should be remarked that such assumption is adapted only for ductile materials
as aluminum or steel. Indeed, structures made up of brittle materials, like concrete, can undergo
permanent deformations and fissuring following isotropic compression or dilatation. For these
cases, the hydrostatic and deviatoric components of the stress tensor must be taken into account
by the material failure criterion.

Von Mises’ plasticity criterion has been formulated for the first time by Richard von Mises in
1913 [251], but its physical interpretation in terms of the deformation energy has been provided
only in 1924 by Heinrich Hencky [137]. Under this interpretation, plastic deformation occurs
when the distortion energy density in some point of €2 exceeds the distortion energy density of a
sample of the same material subject to uniaxial traction stress at the yield point. For a sample
of linear isotropic material subject to uniaxial traction of module oy, the stress tensor oy and
its deviatoric component oy,p are

20y
oy 0 0 3 g 0
oy=[0 0 0|, oyp=| 0 —?Y 0
0 00 o o o
3

Therefore, thanks to the proportionality between the deviatoric strain and stress, the distortion
energy density related to the uniaxial traction is

1 1 1602 1 o3
Up=-0yp:|=—0oyp|=-—"Y—=2YL 2.18
YD = 50vD <2u Y,D) 279 24 6p (2.18)
According to Hencky’s interpretation of the von Mises criterion, a loaded structure preserves its
elastic behavior if, in each point, the distortion energy density is smaller than Uy,p as computed

in equation (2.18)).

2 1 1
gTYL =Uyp > Up(uq) = 3 9D (uq) : ep (ug) = 1, 0P (uq) : op (ug).

Thus, the criterion can be written as

3

5 (o0 (u) s op (ug))' < oy (2.19)

The left-hand side of the inequality (2.19) is defined as the von Mises stress

v (u0) = /2 (o (w0 o () (2.20

We refer to [145], Section 4.5.6] for further details on the interpretation of the criterion and its
comparison with other plasticity criteria.

The interpretation in terms of a plasticity criterion suggests that, in order to avoid plastic
deformations and deterioration of the material, it is important to control the value of the von
Mises stress in the entire domain while designing the structure. Requiring the von Mises stress
to remain below a given threshold in a domain is equivalent to control its supremum, or its

L*-norm, which is defined like in ([1.12]) as

llsp (ug)lloe = esssup fsp (ug)(x)[ (2.21)
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Chapter 2. A deterministic thermo-elastic problem

However, the quantity defined in is not differentiable with respect to the domain, and
thus cannot be considered as a constraint functional in a shape optimization problem solved by
gradient-based algorithms.

An alternative to the supremum of the von Mises stress is given by its LP-norm for p suf-
ficiently large, as proven by proposition This approximation has the advantage of being
differentiable for all p < oo if the domain and the loads are sufficiently regular. The order
p of the norm ought to be chosen carefully. On the one hand, if p is too small, substantial
concentrations of stress could be overlooked, especially for wide domains. On the other hand,
the computation of ||sp (ug)|| » can be numerically challenging for large value of p and requires
highly refined meshes to capture the stress peaks inside the structure.

By the expression , the LP-norm of the von Mises stress is

/p
oo el =2 ([ (o () o () i) (2.22)

Let us consider an elastic structure  C R? which has a C' boundary and whose displacement
ug solves problem (2.3). Then, we can apply the results of section and obtain the following
expression for the shape derivative of |[sp (ua)ll,

D s sl @) = (5) e ([ (o )2 ) ()

ug)

+ . (f WO — O (uQ) T € (WQ)) (@ . Il) ds (223)

6g 8WQ ~
+ . <an'WQ+8n -g+H(g-WQ)> (9-n) dS)

The adjoint state wgq satisfies the following boundary values problem

—div (o (wg)) = —div <5‘2’ (O'D (ug) : op (ug))gAV(UD (ug) : op (uQ))> in €,
(ATVWQ> n= %(UD (ug) : op (uQ)) g71V(0D (ug) : op (UQ))H on I'y U,

wo= 0 on I'p.
(2.24)
The variational formulation of (2.24])

Find wq € Hp () such that for all v € Hp_ (Q)

/ﬂa (wq):e(v)dx = /Qg (a'D (uq) : op (UQ)) 7 (O'D (ug) : op (V)) dx.

(2.25)

2.2 Formulation of the thermo-elastic problem

2.2.1 Time dependent thermo-elasticity

An aspect that can introduce some perturbations in the elastic behavior of a mechanical struc-
ture consists in taking into account the influence of the temperature on the material properties
. In particular, unless the temperature reaches large enough values to provoke the melting of
the material or alter its elasto-plastic properties, thermal dilation is an important phenomenon
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2.2. Formulation of the thermo-elastic problem

to take into account. Thermal effects has been taken into account in shape optimization prob-
lems in the literature (see, for example, [255] 15, 112]). In particular, applications of topology
optimization to additive manufacturing require to pay attention to the different effects of high
temperature gradients on the structure as well as their temporal dimension (refer to [I5] for
more details on thermal effects in 3D printing).

In this chapter we focus on the thermal dilation and the mechanical stress caused by the
presence of a time-variant temperature field surrounding an elastic structure. Let us consider
a bounded domain D € R?, where the temperature field is defined, containing an open domain
Q), representing an elastic structure. We consider the evolution of the temperature inside (2
in the time interval [0,¢;]. We suppose that the temperature field in D \ Q is given as a
function of space and time, and that the material of the structure interacts with the temperature
of its surroundings by Fourier’s law of thermal conduction. The variation of temperature in
) is modeled as the solution of the heat equation, where Fourier-Robin boundary conditions
are imposed on the interface between D and 2. Let p, k, and 5 be positive real parameters
representing the product of the mass density and the thermal capacity of the material composing
the structure, its thermal conductivity, and the heat transfer coefficient respectively. We consider
also @ € L?(Q) to be a heat source internal to the structure. Finally, we assume that the
temperature in the external medium is known, we denote its expression by the function Tey :
(D\ Q) x [0,tf] = R, and we suppose that

Tow € L2 ([0.14]: 17 (00)) = {T: (D\Q) x [0,t] =R : /Ot (/F T2 dx> dt < +oo}.

NUIlo

Under the assumptions above, the differential equation describing the evolution of the tem-
perature field Tq in € for the time interval [0, %] is

pZo _div(kVTn) = Q  in (0,tf] x Q,
EVTo - n+ (T —Text) = 0 on (0,t] x 09, (2.26)
Ta(0,x) = Tp in Q,

where Ty € L2 () is the initial temperature distribution. The parabolic boundary value problem
(2.26]) is well-posed, as proven in [218, Theorem 2.2], and its solution belongs to the function
space L2 ([0,¢7]; H (2)).

We consider that the temperature field affects the mechanics of the structure through thermal
dilation. Let o > 0 be the thermal dilation coefficient, and T;ef € R a reference temperature. The
phenomenon of thermal dilation for linear elastic systems can be taken into account by adding
a term depending on the temperature to the Cauchy stress tensor. For linear, homogeneous,
isotropic materials, the modified stress tensor follows the Duhamel-Neumann law [I68] and
assumes the following expression

o (ug, To) = CVuq + o, (To),

where C is the elasticity tensor introduced in (2.5)), and o1y (ug) the component dependent on
the temperature, which is defined as

OTh (uQ) = _a(TQ - Tref)ﬂ‘ (2‘27)

We consider that the surface 02 of the structure can be divided in three disjoint parts: I'p, I'x,
and I'g. Let f € L2 ([0,¢7;H"1(Q)) and g € L? ([O,tf];H*1/2 (I‘N)) be the mechanical solici-
tations applied in the volume of the structure and on the surface I'y respectively. We consider
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Chapter 2. A deterministic thermo-elastic problem

that the elastic displacements caused by the external mechanical loads propagate faster than
the heat, so that at each instant the structure is supposed at its mechanical equilibrium. Thus,
for all ¢ € (0,¢y], the displacement un(t,x) can be computed solving the following boundary
values problem

—div (o (ug,Tn)) = f in Q,
o(ug,To)n = g on I'y, (2.98)
o(ug,To)n = 0 on Iy, '
ug(s,t) = 0 onIp,

where Tg is the solution of ([2.26]).

The temperature appears in the expression of the elasticity problem, but we ignore the
heat generated by internal friction or other mechanical phenomena. Thus, the thermal and
mechanical problems are said to be weakly coupled. In order to compute the state of the system
in the time interval [0,ty], it is possible to solve first the time-dependent heat equation, and
then solve for the displacement.

2.2.2 The optimization problem

Having stated the heat and elasticity equations for an elastic structure subject to a time-
dependent temperature field, we can state a shape optimization problem. The shape functional
we are interested in is the sum of two parts. The first one, similarly to the problem considered in
[15], consists in the average over time of a differentiable functional, while the second takes into
account the state of the structure at the final time ;. In particular, we focus on a functional
Cr that evaluates the compliance of an elastic structure in the time interval (0,%¢)

N _l Y o (u X X)) u X X
CrT30) = [ [ o (wa(t.). Tt ) < (wa(t, ) dxar o

+(1=9) [ o (untyx). Tolty. %)) € (ot %) dx

for any u € L2 ([O,tf],H%D (Q)d) and any T € L2 ([0,t7],H' (Q2)). The parameter v € [0,1]
weights the two components of the functional Cr. As in section we denote the reduced
functional by Cr(Q) = Cr (ug, To; ), where T, and ug solve problems (2.26) and (2.28)) respec-
tively. Similarly to the optimization problems studied in part [[T, we consider an optimization
problem where the objective is the minimization of the volume of a structure, under a constraint
on the functional Cr.

Find the admissible shape Q € S,qm
minimizing the volume Vol(2)
under the constraint Crt (ug,Tq;Q2) < 7, (see equation (2.29)),

where the temperature Ty, € L? ([O, tsl, H! (Q)) (2.30)
solves the heat equation (12.26)),
and the displacement ug € L? ([O, trl, H%D (Q)d>

solves the thermo-elasticity equation (2.28)).
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2.2. Formulation of the thermo-elastic problem

2.2.3 Computation of the shape derivative

In order to solve problem (12.30)) using a gradient-based optimization method, it is necessary to
compute the shape derlvatlve DCT(Q) of the functional CT We proceed as in sectlonm First,
we compute the sensitivity of CT to the shape €, then, we compute the Lagrangian derivatives of
the temperature and the displacement. Finally, since the functional Ct is not self-adjoint with
respect to the state (ug,Tq), we introduce two adjoint states Ro and wq aiming to erase the
Lagrangian derivatives in the expression of DCp ().

We refer to appendix [A] for the list of formulas used to compute the shape derivative of
Ct. An analogous result can be obtained using the Céa fast derivation technique described in

section as proposed in [I5].

Differentiation of the thermo-elastic compliance

We start by considering a bounded C'-domain € and a Lipschitz continuous vector field 8 €

Wlhoo (]Rd)d such that [|€]]; ,, < 1. We denote Qg = (I+0)Q the perturbed domain by the vector
field 0, and T, and ug, the temperature and displacement respectively obtained by solving
equations (2.26)) and (2.28) on Q. By supposing that the portion of the boundary where the
structure is clamped is not optimizable, we can consider that 8 = 0 on I'p.

Cr (ua,, Tay: Q) = t”f /0 Y /Q 5 (1, (K1), To (1) - €5 (v 1,)) %
=7 [ o (a0, (6 11), Toy (%,1)) - €5 (R 1) d%
_ /O N [ (500 (%) s Tt (1.%) = a(Tay (1%) — T divg uny (%)) dx dt
.
+(1—7) /Qe (CVzuq, (X, tf) : Viun, (X, tf) — a(Tn, (X, tf) — Trer)divy ug, (X, ty)) dx.

Using the results of section Wwe can express C/E(Qg) in terms of integrals on the reference
domain.

Cr () = V/tf/ (Vb x) 1+ V0)™) : (Vidy(t, x) 1+ V8) ™)) det (I + VO)| dxdt
f/ /Q (T8 (t,%) — Toer) 1+ VO) ™" : Vi (£, ) (1 + V) ™) [det (1 + V)| dxcdt
+(1—’y)/Q (<c (Vﬁg(tf,x)(ﬂ+va)—1) (Vuﬂ(tf, )(11+v0)—1)) |det (I + VO)| dx

. ’y)/g (a(T8(t7. %) — Tret) L+ VO)™™ : Vit 1, x)(L + VO) ™) |det (I+ V8)] dx,
(2.31)
where C is the fourth order Hooke tensor, and u% = ug, o (I+6) and fg =To, o (I+0) are the
results of pushing ug, and T, on the reference domain. Then, we differentiate equation
with respect to @ in 0 using the expressions in section Denoting 1o (8) and T (8) the
Lagrangian derivatives of the displacement and the temperature we get

DG(Q)(a) = 21 /tf/ (CVUQ(t,X) : (VUQ(a) — VUQ(t,X)Va)) dx dt
S / (aTﬂ (8)divug + a(Tq — Trer) (divug(é) —vo' - VHQ)> dx dt

67



Chapter 2. A deterministic thermo-elastic problem

t .
+ tl / ’ / (CVuq(t,x) : ug — a(Tq — Trer)divug) div @ dx dt
/o Ja
Lol ’y)/Q (CVua(ty.x) - (Via(®) - Vua(t;, x)v8)) dx
—(1— 'y)/ (aTg(@)diV ug + a(To — Tref) (div 1o(6) — Vo' Vug)) dx
Q

+(1-7) / (CVuq(ts,x) : ug — (T — Tret)div ug) div @ dx. (2.32)
Q

Computation of the Lagrangian derivatives

In order to remove the terms of equation containing the Lagrangian derivatives of the
temperature and the displacement, we compute their expression by differentiating the state
equations (2.26]) and (2.28)) with respect to the domain.

We start by multiplying the time-dependent heat equation by a generic test function
S € V(0,t5;9), where

V(0,t7:9) =" (10,4, 12 () N L2 ((0, ) H' (©)) .

After integrating over 2, on the time interval [0,¢;] and by parts, we obtain that T satisfies
the following identity for all S € V(0,t; Q)

t
/f/ aT“Sd dt+/ /WTQ Vdedt+/ / BToS dsdt
:/' /SQdth+/' / BTuS ds .
0 Q 0 o0

Let T, be the solution of problem (2.26) on the perturbed domain Qy = (I 4+ 6)S2. Thus,
considering a test function S still defined on the reference domain, (2.33]) becomes

(2.33)

tf tf
/ / paTﬂaSo(I+0)_1d>~<dt+/ / kYT, - Vi (So (1+6)7) dxdt
0 Qg ot 0 Qg
tf tf
+/ / BTo, So(I+6)" dsdt = / QSo(I+6) ! dxdt (2.34)
o Jaren 0 Jag

t
+/f/ BTexi S o (I+0) ' dsdt.
0 J(1+6)0Q

By writing equation ([2.34)) with respect to the reference domain we get

ty Ty ty ~g
/ /p—s det (I + V)| dxdt+/ / 8T8 S Jacr, (I+ ) dsdt
0o Jo ot o Joo
ty ~
+ / / k((1+VO)~TVIE) - (14 V) ~TVS) |det (I + VO)| dxd
0 Jo
ty ty
:/ /SQo(I+0) et (I + V6)| dxdt—i—/ / BS Tuxt o (I+0) Jacry (I + 0) ds dt.
0o Jo 0 Joo
- 2.35
The expression for the Lagrangian derivative Tp is obtained by differentiating equation (2.35)
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2.2. Formulation of the thermo-elastic problem

in @ =0:
t ~
/f/ (aTﬂ Bgﬂ(dv0)> dxdt—i—/ /WTQ 0) - VSdxdi
- / / k (vé +VO —div 9) VTa - VSdxdt + / / 3S (TQ + divan 5) dsdt (2.36)
0 Q 0 (o))

ty . a tf . a 8jﬂext n
_ / / Sdiv (6Q)dxdt + / / 35S (dwaQ(OTeXt) v (e-n)) ds dt
0o Ja o Joa On

—~ d
for any € Wh™® (Rd) . By rearranging the terms of equation ([2.36)), we obtain the following
identity, satisfied for all S € V(0,5;)

t
/f/p dedt+/ /WTQ Vdedt+/ / B8BTS ds dt

t
/f/ 8&5 dwg)dxdt+/ /k(VB—i—VO )VTQ-Vdedt
o Ja

~ t ~
- / / KT - VS (div 8) dx df — / ’ / BT0S (diven 8) ds dt
0 Q 0 o0

t R t ~ —~
—i—/f/Sdiv 6Q) dxdt+/f/ 35S (divag(BText)—i- e (9-n)> ds dt.
0 Ja o Joa On

Moreover, thanks to the initial condition T (0,x) = Tyef, we have that Tq (0,x) 0 on .

In order to identify the equation solved bu i we proceed in a similar way. Since the elasticity
equation is supposed to be quasi-static, the following equations hold for any ¢ € [0,¢7]. We start
by considering a generic test function v.€ W(0,t7;), where

(2.37)

WO, 15;9) = € ([0, 712 () N L2 (0, 17); HE, (2)°)

We multiply the first equation of problem ([2.28) by v and we integrate over 2 and by parts,
and we obtain the following identity, which hold for all ¢ € [0, /]

/Q(CVuQ(x,t) re(v)dx = /

a(Tq — Tref) divvdx + / f-vdx+ | g-vds. (2.38)
Q Q

I'n
Denoting ug, the displacement solving (2.26)) on the perturbed domain Q¢ = (I + 6)Q2 and
considering a test function v defined on Q, (2.38) is written as

CVzuq, : Vg (V o(I+ 0)—1) dx = / a(Ta, — Tret) divg(vo (I+0)71)dx
o o (2.39)

+ [ £ (vo(l+0)™) dx+

X g (vo+0)7") ds.

(I4+0)I'y

Using the formulas of section[A.2] we express equation ([2.39) in terms of integrals on the reference
domain

/Qc (Va1 +v6) ™) : (Tv(I+V6)™) [det (I + VO)| dx
—/ (T8 ~ Tret) (14 V0) ™"+ T) [det (I + V6) dx—I—/ o (I+0)) - v |det (I + V)| dx

+ (g0 (I+0)) Jacry (I + 6)ds.
) (2.40)
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Chapter 2. A deterministic thermo-elastic problem

Then, we differentiate (2.40|) in & = 0 using the expressions formulated in section Thus,
~ d
for all @ € Wh (Rd> such that @ = 0 on I'p we have
/ ((CVuQ(a) . Vv — C(VuVvé) : Vv — CVu: (VvV8) + (CVu : Vv) (div 5)) dx

_/ N leVdX — /a(TQ — Tref) (V@T : Vv) dx + / a(Tq — Tref) (div v)(div 5) dx
Q Q

. ~ . ~ 8\ 4
+/Qv-d1v(f®0) dx+/FNv-d1vFN (g2 0) ds+/FN (v an) (0 -n)ds.

The equation above can be reformulated as follows, highlighting the terms containing the La-
grangian derivative 1l

/ CVag(d) : e (v)dx = / (C(VuaVh) : Vv + CVuq : (VvV0) - (CVuq : Vv) (divd) ) dx
Q

( 6)divv — (T — Trer) (vo W) + (To — ref)(dwv)(divé)) dx

+/ﬂv-div(f®0) dx + N <v-dier (g@@) + (v-gi) (5-n)> ds.
(2.41)

Introduction of the adjoint states

In order to cancel the Lagrangian derivatives in the expression , we introduce the adjoint
states R and wq, related to the temperature and the elastic displacement respectively.

We start by considering the adjoint state wq € V(0,ts,) solving the following quasi-static
differential equation for all ¢ € [0, /]

—div(CVwq) = —div(CVuq)+ §VIg  inQ,
(CVwo)n = g+ (Tq — Trer)n on I'y, (2.49)
(CVwo)n = (Tq — Tief)n on I'g,
wo = 0 on I'p.

In order to inject the adjoint state in the expression (2.32)) of the shape derivative of C/E(Q), we
multiply the first equation of (2.42) by un(8) € W(0,ts;2), and we integrate over 2, obtaining

/ CVwg : Viag(8) dx = / CVug : Vg () dx — / %VTQ g (0) dx. (2.43)
Q Q Q

We remark that all terms in the right-hand side of equation appear in the expression
of the shape derivative of the compliance. Moreover, the left-hand side of equation
coincides with the left-hand side of for v = wgq because, thanks to the definition and
properties of the Hooke elasticity tensor,

CVig(0) : e (v) = CVv : Vug(0)
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2.2. Formulation of the thermo-elastic problem

Since wq € W(0,t7,), the identity (2.41)) holds, and the shape derivative of Ct becomes

DCr(Q)(8) = ; /0 Y < /Q (aTQ(é) div(2wa — uq) — a(To — Tet) (ve . V(2wg — UQ))) dx

/ (CV(2wa — ua) : Vug — a(To — Tret)div(2wa — ug)) div 8 dx

4 / (VuaV) : V(2wq — ug) + CVug : (V(2wg - ug)VO)(divh) ) dx
+2/QWQ-div<f®§) dx+2 [ <WQ.divFN (g28) + (wQ : gi) (é.n)) ds)dt
+(1—7) (/Q <aTQ(§) div(2wq — ug) — a(Tq — Tret) (VB :V(2wq — ug))) dx

/ (CV(2wq —uq) : Vuq — a(Tq — Trer)div(2wg — ug)) div 9 dx

4 / C(VuaV8) : V(2wq — ug) + CVuq : (V(2wq — u0) V) (divh) ) dx

. ~ . = g
+2/QWQ-d1V (f®9) dx+2 e (WQ-ChVFN (g®0) + (WQ 8n> (9 n)) dS)

t=ty
(2.44)

For the purpose of canceling the dependence of the expression ([2.44]) from Tg(é), we introduce
the adjoint state R € V(0,ty;(2) solving the following differential equation backwards in time

—paa% —div(kVRq) = vyadiv(2wq —ug) in [0,tf) x Q,
kEVRo -n+ pBRq = 0 on [0,tf) x 09,
Ro(ty,x) = LEadiv(2walty,x) —ug(ty,x))  in Q.
(2.45)

We multiply the first equation of (2.45) by TQ(@) € V(0,t4;Q), and we integrate over € and
[0,¢], as well as by parts in space and time, and we obtain

ty ORq . ~
/ / < —TQ ) 4 div (kVRq)T0 (0 ) dxdt = / /adw 2wq — ug) Tn(0) dx dt;

L t T (0 t A
f/ﬂp (RaT0(®)) dx+/ f/pa Q(B)Rgdxdt+/f/kVRQ-VTQ(G)dxdt
t= tf

ty ~ OR
/ / kTo(0 —Qd dt = / /aTQ )div (2w — ug) dx dt.
I'nyUTg

Thus

g To(0 b Lo ty L
/ /Pa gt( )Rﬂdxdt—i-/ /kVRQ'VTQ(O) dxdt+/ / BT (0) Ro dx dt
0 e 0 Ja 0 JI'nUDp

=~ /Otf /Qa To(0)div (2w — ug) dxdt, +(1 — fy)/Qa (div(2wq(ts,x) —un(ts,x))) ., dx.
(2.46)
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Chapter 2. A deterministic thermo-elastic problem

By combining equations (2.37)) and (2.46)), and injecting the result in the expression (2.44), the
shape derivative of the compliance can be written as

DCr(Q)(8) = 7/tf <_/Q <a(TQ ~ Tet) (vo . V(2wq —UQ)>> dx

trJo

/ (CV(2wo — uq) : Vug — a(Ta — To)div(2we — ug)) div 8 dx

4 / (VuaV8) : V(2w — ug) + CVug : (V(2wq — ug)V8)) dx
. ~ . ~ g\ 3
+2/vi9.dw(f®0) dx+2] (wQ-dwFN (s28)+ (wQ : an) (9-n)> ds)dt

+(1—7) (—/Q (a(TQ — Tret) (VH :V(2wq — ug))) dx

/ (CV(2wq —uq) : Vuq — a(Tq — Trer)div(2wg — ug)) div 0 dx

+ / VUQVH ): V(2wq —uq) + CVugq : (V(2wq — uQ)Vg)) dx
+2/w9.div<f®@) dx + 2 (WQ-din (g@@) 4 (wQ Og ) @ - n)> ds
Q I'n N on

t —~ R -~
+/ f( / ( 22 R (dive) + k (ve + vaT) VT VRq — kVTq - VRq (div 9)) dx

t=ty

8T‘ex‘c
on

+ / Rq div (8 Q) dx + BRq (divm(é Toxt) + (6 -n) — Tq (divog 5)) ds) dt.
Q

(2.47)

I'nUlg

Looking at the equations and , we remark that the adjoint states are weakly
coupled with one another, but the dependence is reversed with respect to the relation between
the temperature and the displacement fields. Indeed, in section [2.2.I] we supposed that the
equation for ug relies on the solution of Tq, while the expression of the adjoint state for the
temperature Rq depends on the adjoint state for the displacement wgq.

The expression of DEE(Q)(@) is the volume form of the shape derivative of the compli-
ance. However, theorem |1.7|ensures that, if O C R? is a C! domain, DC?(Q)(@) can be expressed
as an integral over 02 depending only on the component of 6 normal to 9. We suppose that
the part I'p of the boundary is non-optimizable, therefore we restrict the Lipschitz continuous
vector field 8 € WL (Rd)d to be such that @ = 0 on I'p. With the help of the formulas of
section and considering the boundary conditions of problems (2.26) and (2.28) we obtain

DEH(@)®) =] [ ! (— [ (@t~ T (252 - 22)) (@ -m)as

— / ((CV(2WQ —uq) : Vug — a(Tq — Tier)div(2wg — ug)) (5 -n)ds
I'nULg

ougq
+2 e <g~ an)(a n)ds + 2

(f - wa + (To — Tref)n - 8“9> (@-n)ds

U on
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2.2. Formulation of the thermo-elastic problem

. ~ g
+2 . (WQ -divpy (g ® 9) + (WQ 6n) (0 n)) ds) dt

+(1-) (— /FNUFO (a(Tg — Ther)n - (263? - %‘;")) (0 -n)ds

— / ((CV(QWQ —ug) : Vug — a(Tq — Trer)div(2wg — UQ)) (@ -n)ds
I'nyUTg

8119 8119 R
+2 . (g on ) (6-n)ds +2 reor, <f ~wq + (Tg — Tref)n - 8n> (6 -n)ds

19 . (WQ - divry <g® 5) + (wQ gn) @ - n)) ds)

t a R
+/f / k(VTo-VRq)—p QRQ—Qﬁ Ro(To — Tref) + R Q) (8- n)ds
0 I'nUTg ot k

t=ty

8 Text
on

4 BRq (divag(?) Tue) +

I'nUT g

(6 -n) — T, (divao é)) ds) dt. (2.48)

2.2.4 Discretization of the state and adjoint equations

In order to solve numerically the optimization problem using the techniques presented in
section it is necessary to discretize and solve the state problems (2.26]) and (2.28)) for the
temperature and the displacement, as well as the adjoint problems (2.42)) and (2.45)), at each step
of the optimization algorithm. Let D C R? be a computational domain such that any admissible
domain in S,qm is contained in D, and let €2 C D be an admissible domain. We consider a mesh
Tp covering the entire domain D, and such that Q is explicitly discretized by a submesh 7Tq.
Moreover, we discretize the time interval [0,%;] by dividing it in IN; sub-intervals, each with
length At = J\i We introduce the finite-dimensional spaces V*(Q) and W"(Q2) discretizing
V() and W(Q) respectively by P! Lagrangian finite elements:

Vh(Q) = {S cH' (Q) : 5‘ € PY(K) for all element K € TD} ;

K

WhQ) = {v € HILD Q? : v’ e P}(K)? for all element K € TD} .

K

As first step, we aim to solve the time-dependent thermal equation. We start by writing the
discretization in space of the variational form of equation ([2.26]).

Find T" € €' ([0, 47, V"(2)) N L2 ((0,£0):V"())
such that for all S* € V*(Q)

d
dt

with the initial condition 7"(0,-) = Tp.

/pThShdx+/kVTh vShdx + BThShds:/Sthx—i— Tror S" ds,
Q

I'nUlMg I'nUlo

(2.49)
In order to solve problem (2.49) in time we denote T* € V"(Q) the discretization of Tq(iAt, )
for alli € {0,..., N;}. We consider as initial condition Té‘ = Tp, and we compute the subsequent
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Chapter 2. A deterministic thermo-elastic problem

temperature fields by an implicit Euler method

For any i € {1,...,N;}, find T/ € V*(Q)
such that for all S" € V"(Q)

T =TM \ o h h h Gh
_ T; T:
/Qp < Az ) S dx—l—/kv -VS"dx + FNUFOB ;S ds (2.50)

:/Sthx+/ Tos S" ds,
Q I'nUTg

knowing the initial condition Téz =Tp.

Since the state equation (2.28) for the displacement ug is quasi-static, we can compute
ul € Wh(Q) approximating uq(iAt,-) for all i € {0,..., N;} by solving the following problem
by a finite-element method

For any ¢ € {0,..., N;},
find u} € W"(Q) such that for all v € W"(Q) (2.51)

/(CVuZh : vvth:/(ﬂh*Tref)(diVVh)dX+/f'Vth+/ g-vhds.
Q Q Q I'n

Having discretized the state in space and time, we can express the discrete thermal compli-
ance (2.29) by replacing each state variable with its approximation, and the time integral with
a Riemann sum

Ch(e) =Cht ((uf. ... uly). (T3 ... Th ): 0 Z / ul T : e (u?) dx

+(1—7)/QU (u}&t,T]}\}J : (uNt) dx.

The computation of a discretized shape derivative of the compliance requires the discretiza-
tion of the adjoint states is done similarly to the forward equations. Since equation equa-
tion (2.42) for wq is quasi-static and it depends on both ug and T, we can discretize it as
follows

(2.52)

For any i € {0, ..., N;},
find w? € W"(Q) such that for all v € W'(Q) (2.53)
/CVW? :Vvldx = /CVU? Vvl dx + / gVTZ-h -vhdx.

Q Q Q2

For the adjoint state R we discretize in space the variational form of problem (2.45)), and
we consider an implicit Euler scheme backwards in time for the integration in time.

For any i € {0,...,(Ny — 1)},
find R € V"(Q) such that for all S* € V()

R~ R
—/p <“> Shdx+/kVRh VShdx + BRI S"ds
Q At I'nUDo (2.54)

:/’yadiv <2w?—u?> Shdx + Trer S™ ds,
Q

I'nUT g
(1-7)
p

knowing the final condition R?Vt =

adiv (QW%Q — u?\g) .
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2.3. Numerical simulations

The final condition on the adjoint state is fixed. Thus, we start by computing R’]’g,t_l, and we
proceed backwards towards Rf.

Having computed the discrete solutions of problems (2.50)), (2.51)), (2.53)), and for all
timestep ¢ = 0,..., N;, we can finally express the discretization of the shape derivative of the
functional C/E in  as

L Ny AN
s 8- (w00~ mom (452 22) )

_ / (CV(w! —ul) : V! — a(T) — Tr)div(2w! — ul)) (8 -n) ds
I'nUT g

~UTo

(f Wi (TP = Tyet)n - aa‘f) (6 -n)ds

A\
+2 <g~au2>(0-n)ds+2
I'n an I'nUT g

. 5 g\ 3
+2 e <wf - divpy (g ® 9) + (WQ : 8n> CE n)> ds)

wh u’ N
+(1 - 7) <_ /FNUFO <a(ﬂh - Tref)n ’ (2881: - %Ii >> (0 ’ n) ds

—/ <CV(2W? —ul): Vug — (T — Trer)div(2w? — u?)) (6 -n)ds
I'nUT g

g .
On U

oul, \ - oul \ -
+2 ( uNt)(e-n)ds+2 (f-wQ+(T]@t—Tref)n- urflvf>(9.n)ds
I'n

. ~ og\ 4
+2 (w}fvt - divpy (g ® 0) + (W?Vt : 8n> CE n)) ds)

I'n

t=ty

Nt h h 2
Th — T R
+ Z(/ </€(VTih . vR?) - plil—lR? - ZQR?(TZ-" — Tref) + R? Q> (0 -n)ds
i=1 \/I'nUlo t k

8;?;“ (6 -n) — T (divag 6)) ds). (2.55)

+ BR! (divag(é Toxt) +
I'nUL g

2.3 Numerical simulations

2.3.1 Optimization of elastic structures

As a first example, we consider the optimization of the 3D cantilever structure shown in fig.
The cantilever is clamped on the four portions I'p of its boundary, and a traction load g ori-
ented as —e, is applied on I'y. We suppose that the structure is composed by a linear elastic,
homogeneous and isotropic material, characterized by the Young modulus £ and the Poisson
ratio v.

We considered three different optimization problems. For all three, the objective is to min-
imize the volume of the cantilever. However, different constraints are imposed to each case.
In the first one we impose that the mechanical compliance should not exceed a threshold 7.
For the two remaining problems, the constraint is replaced by imposing an upper bound on the
L2-norm and the LS-norm of the von Mises stress respectively.
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Chapter 2. A deterministic thermo-elastic problem

The optimization problems can thus be formulated as follows

Find the admissible shape 2 € Suqm
minimizing the volume Vol(£2)

under the constraint H(uq, ) < T,

where the displacement ug € H%D (Q)?

solves the elasticity equation (2.56)
—div(o(ug)) = f in Q,
oc(ug)n = g only,
oc(ug)n = 0 onTy,
u) = 0 on FD.

The three different constraint functionals taken in consideration here are:

o H(ug,2) =C(uq,) = /a’ (uq) : € (ug)dx for the mechanical compliance;

Q
3 1/2
s H(ug,Q) = |sp (uo)llp2) = 3 (/QO'D (ug) : op (UQ)dX> for the L2-norm of the von
Mises stress;
3 1/6
« H(ug, Q) = |[sp (uq)llysq) = B (/Q (op (ug) : op (ug))? dx> for the LO-norm of the

von Mises stress.

I'p I'p
FD FD

Figure 2.2: Initial and final condition for the optimization problems (2.56]) of the 3D cantilever.

All numerical results of this section and the next rely on the sotuto platform developed
by Dapogny and Feppon in [91] and summarized in section The simulations have been
performed on a Virtualbox virtual machine Linux with 1GB of dedicated memory, on a Dell
PC equipped with a 2.80 GHz Intel i7 processor. The numerical values for the geometry, the
material properties, and the discretization parameters are presented in table The numerical
results are compiled in table 2.2]

In fig. we show the optimal shape of the cantilever under a constraint on the mechanical
compliance, and in fig. [2.4] we report the trends of the objective and the constraint functions
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2.3. Numerical simulations

Geometry of the structure

cross section length Ly 1.0cm

longitudinal length Ly 2.0cm

sidelength of I'p 0.3 cm

radius of I'y 0.1cm
Elastic coefficients

young’s modulus E 200 MPa

poisson’s ratio v 0.3
Mechanical loads

vertical load lg| 10kPa
Mesh size parameters

minimal mesh size hmin 0.025 cm

maximal mesh size hmin 0.10cm
Thresholds for the inequality constraints

threshold on the compliance ¢ | 5 x 1072 kPacm?

threshold on the norm of the von Mises stress  7p 3 MPa

Table 2.1: Numerical data about the geometry and the mechanics of the cantilever of fig.

throughout the optimization process. The optimized cantilever has a hollow structure that is
reinforced in the vertical direction, in order to resist the vertical traction. It is worth remarking
that the upper and lower halves of the structure are identical. This symmetry is due to the
invariance of the compliance with respect to a change of sign of the displacement.

Figure 2.3: Optimal shape of the 3D cantilever under a constraint on the mechanical compliance.

The results of the optimization under constraint on the LP-norm of the von Mises stress are
reported in fig. (for p = 2) and fig. (for p = 6). The evolution of the objective and the
constraint is shown in fig. for both cases.

As for the case of the constraint on the compliance, the optimized shapes are reinforced on
the vertical direction and present a symmetry between the upper and lower halves. However,
the structures are not hollow and show a pronounced branched structure. In graph of fig. 2.70]
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Objective 10-2 Constraint
--- 7¢ = 0.05kPacm?
— 15
=
5,
e
3
0.5
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Iterations Iterations
(a) Evolution of the objective function. (b) Evolution of the constraint.

Figure 2.4: Convergence of the objective and the constraints for the 3D cantilever under con-
straints on the mechanical compliance.

we can observe a few spikes in the trend of the constraint on the LS-norm of the von Mises
stress. This phenomenon shows that the enforcement of the constraint on the LS-norm of the
von Mises stress is more difficult than for the constraint on the L2-norm. Indeed, the LS-norm
is more sensible to the concentration of the von Mises stress than the L2-norm. Thus, numerical
instabilities can arise due to an inadequate mesh refinement in the critical regions for some steps
of the optimization.

The numerical results of table compare the value of the compliance and the L? and LS -
norms of the von Mises stress for the three optimal structures. At first, we can remark that
the constraints enforced in each problem are saturated and satisfied. By comparing the norms
of the von Mises stress for the three cases it appears that the L-norm is always larger than
the L?-norm. Despite their similar shape, the structure optimized for the L?-norm does not
satisfy the constraint on the L-norm of the von Mises stress, while the optimal structure for the
LS-norm satisfies both. This difference can be explained by a stress concentration in the first
structure that has been avoided in the second one. As discussed in section [2.1.3] the avoidance
of high concentrations of the von Mises stress is a problem of primary importance in structural
mechanics. The different results yielded by the cantilevers optimized for the L? and the LS-norm
highlight the need to consider norms of higher degree in order to obtain robust structures with
respect to the von Mises criterion.

2.3.2 A 2D thermo-elastic problem

In this section we present the results of the numerical solution of a 2D thermo-elastic problem.

Let us consider a square computational domain D and an elastic structure 2 C D. We divide
the boundary of €2 in three disjoint regions: I'p consists in two support region on the lower face
of D, I'y is the upper surface, and I'y the remaining portion of 9€2. A uniform mechanical load is
applied on the upper surface of the structure (see section |2.3.2)), while a time-dependent thermal
field iyt swipes the space D \ 2. We suppose that Ty models an ascending heatwave with the
following expression

. B . B t t € (O,tf],
Text (t, x) = Ty + max (0.07 Trax Sin <7r (y 2tf>>> x=(z,y) € D\Q. (2.57)
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e .

-

Figure 2.5: Optimal shape of the 3D cantilever under a constraint on the L2-norm of the von
Mises stress.

N . 4 I
- e
-

Figure 2.6: Optimal shape of the 3D cantilever under a constraint on the LS-norm of the von
Mises stress.

79



Chapter 2. A deterministic thermo-elastic problem

Objective Constraint
5
L%-norm ---7p =3MPa
— 154 —— LS-norm & L2-norm
=15 )
£
c 17
3
0.5
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0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
(a) Evolution of the objective function. (b) Evolution of the constraint.

Figure 2.7: Convergence of the objective and the constraints for the 3D cantilever under con-
straints on the L2-norm and the LS-norm of the von Mises stress.

Elastic problem Constraint functional
Compliance | L2-norm of sp | L6-norm of sp

Execution

Number of iterations 300 100 100

Execution time [min] 143.7 47.6 40.9
Objective

Final volume [cm?] 0.2402 0.2493 0.5840
Constraints

C(u,9) [kPacm?®] | 5.0936e — 2 | 6.6118 x 1072 | 3.5763 x 102

|lsp (UQ)HL(;(Q) [MPa)] 2.645 3.003 2.203

|lsp (ug)||L2(Q) [MPa)] 4.906 5.571 2.989

Table 2.2: Numerical results for the cantilever problem 1)

The heat is transmitted from the exterior of ) to the structure through the free surface I'g, and
than it diffuses in the interior of ).

The elastic properties of the material are described by the Lamé parameters A and p, the
density pps, the heat capacity C, the thermal expansion coefficient «, the thermal conductivity
k, and the heat transfer coefficient 8 between the structure 2 and the exterior. The term p
appearing in the heat equation is the product between the mass density pys and the heat
capacity of the material C. The equations describing the heat diffusion in €2 and the elastic
displacement are presented in section as equation and equation . For the sake
of simplicity, we neglect the volume forces term (f = 0) and the thermal generation inside 2
(Q =0). A vertical pressure of module |g| is applied on the upper surface of the structure.

We aim to find the shape © of minimal volume for which the functional Ct (u,T;$2) intro-
duced in equation is kept below a threshold 7. The shape optimization problem can thus
be summarized as in problem . We suppose that small regions around I'y and I'p are
non-optimizable. The numerical values of the parameters cited above are presented in table
while the procedure for the numerical optimization is detailed in section [2.2.4]

80



2.3. Numerical simulations

Geometry of the structure

Length ly 1.0cm
Heigth Ly 1.0cm
Sidelength of each support I'p 0.1cm
Thickness of the non-optimizable regions 0.05m
Duration of the simulation Ly 5.0s
Discretization parameters
Minimal mesh size hmin 0.01
Maximal mesh size hmax 0.03
Time step length At 0.1s
Number of time steps Ny 50

Elastic coefficients
Young modulus 200 GPa cm
Poisson ratio v 0.3

Thermo-mechanical properties

&

Mass density P 8 x 1073 kgcm ™2

Heat capacity C 450 Jkg 1K1

Thermal conductivity k 15x102Wm'K!

Heat transfer coefficient 15} I0OWm—1K™!

Thermal expansion coefficient « 0.05 GPaK™!
Mechanical and thermal loads

Vertical mechanical load g| 10 GPacm

Maximal external temperature Tinax 100°C
Parameters on the constraint functional

Weight parameter % 0.5

Threshold on the compliance T 3.0 x 1073 MPa cm?

Table 2.3: Numerical data concerning the geometry, the mechanics, and the material properties

of the thermo-elastic problem ([2.30)).

We compare two cases. In the first one we consider the thermal coupling according to the
equations of section[2.2] In the first one, all dependence on time and temperature is disregarded.
For this case, the functional Ct (u,T'; Q) is equivalent to the simple mechanical compliance. The
results of the two simulations are presented in fig. and fig. respectively. Figure
compare the evolution of the compliance through the optimization for both cases, and compare
it with the imposed threshold. In fig. the compliance Ct (u,T; ) is decomposed in two
parts C}1eM and CT", in order to highlight the contributions of the two parts of the thermo-elastic
stress tensor o (ug,Tq)

Chlech — / /(CVuQ (t,x) : € (uq(t,x))dxdt
)/Cvuﬂ(tf, x) : € (un(ts, x)) dx,
t

e~ —a% ’ / (To(t, %) — Ther) div ua(, x) dx dt
0

—a(1 - *y)Z (Ta(ty,x) — Trer) divug(ty, x) dx,

The numerical results of the two optimization problems are compared in table In fig.
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Chapter 2. A deterministic thermo-elastic problem

we show the decrease of the volume (the objective function) through the optimization process.
Figure [2.10] illustrates the conformity to the constraint for all three examples. In fig. is
shown the evolution of the temperature inside the structure optimized for the thermo-elastic
problem.

! TAVAV A A AN SO i%‘&ﬁ
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- . . ]
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A o

e
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o

:'f /

' A

::;"" 4’%”:}%& 4:,

I'p I'p

Thermo-elasticity Elasticity

Execution
Number of iterations 100 100
Execution time [min] 18.07 1.30
Results
Final volume Vol (Qqpt) [cm?] 0.6423 0.3825
Compliance Cr (u, T;Q) [MPa cm?] 3.00451 x 1073 3.01018 x 1073

Table 2.4: Numerical results for the thermo-elastic problem 1D

A notable difference between the mechanical compliance for purely elastic problems and
problems where the thermal effects are taken into account is the fact that the second one can
be negative. If the thermal expansion is predominant over the deformation due to mechanical
solicitation, it is possible that the pressure applied to the structure exerts a negative work. Such
situation can be observed for the initial condition of the thermo-elastic problem in fig.

Figure shows also the antagonistic role played by the components C%/ICCh and C%h
of the constraint functional. Being constantly negative, the thermal component balances the
mechanical component, which is always positive, lowering the value of the constraint.The effects
of this feature can be observed also by comparing the optimal structure sensible to the thermal
variations (fig. with the optimal shape for simple linear elasticity (fig. . Indeed, the
lowering of the compliance by the thermal expansion effect allows, in this case, for a thinner and
lighter structure.

The extremely short duration of the optimization in the purely elastic case is expected. The
mechanical response of the structure is supposed to be instantaneous, and the displacement is
computed by the quasi-static elasticity equations. Since the dependence from the temperature
is neglected for that example, and since the mechanical load is supposed as constant, there is
no need to compute the evolution of the displacement field in time.

82



lations

S1mu.

Numerical

2.3.

%

AN

AVAVAN

<\
NI

AVAY

R
) SN
SR
Sy a5

5

AV
B
JAVA
KK
\VAVA

/N
N/
A

2
3
¥

I ZAVAVAY
'aﬁ VA
/N

vaVs
\]
5

VAY
BEASRERAD

FAVA IavAVAVAVAVAVARTare: I o=

prATAVAAYAVAAVAAYATAVAV S

A AV AVAVAVAVAVAY S

YAVsvav, ORI,

VAvY PRI

AVA)
NN

\/
%
>
<3
o
K

i

55
Lo

o
V'V
4V
\]
S

AVA
s,
<

f

ey
5
5
2

Saees
AVAV/
POOGF]

A

\/

VaVAN Vg

K]
RIS

-

A AVAVAV AV AV AW A i =

AVAYAVAVA™S
AvAVAvAVAVAVu

Vavpy
XA A%VA

A\

85X
K

4V
S,

YA
S VAV

S
IRXX
OAVAYA AV

\\
\/

YaY
VAV

X »»ﬂvuwmmvuv

Va)
Ay Y AV AN YAV A A% SYAVAV NVAVAVATAVAY N

X5

Pas

O NNV NAVAVLVAVAVAS VAT

(b) Purely elastic problem.

(a) Thermo-elastic problem.
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mechanical and thermal components.

Figure 2.10: Convergence of the constraints for the 2D thermo-elastic optimization prob-
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Figure 2.11: Temperature of the optimal structure for the thermo-elastic problem subject to
vertical compression at the instants iter_t = 12,25, 36 and 50.
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Chapter 3

Optimization of the worst-case
scenario
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3.1 Introduction

3.1.1 State of the art and contents of the chapter

An important class of optimization problem under uncertainties focuses on the evaluation of
the worst-case scenario of a given functional, which can either appear as the objective func-
tion or as the constraint of the optimization problem. The two situations require different
approaches. As reported in [43], the optimization of the worst-case scenario is preferable to
robust or reliability-based optimization problems when the data are imprecise or if they are
uncertain with an unknown probability distribution, or if the strict respect of the constraint
in all circumstances is of primary importance. Different techniques to solve shape optimization
problems with worst-case functionals have been proposed. In [68, 99| 161, 22] the objective of the
optimization problem consists in minimizing the maximal possible value of a given functional.
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Chapter 3. Optimization of the worst-case scenario

In [128|, [10} 22] are considered also problems where the uncertain functional acts as a constraint,
and numerical examples are provided for density and level-set methods. The authors of [10]
consider smooth functionals subject to small perturbations, and propose a method to compute
the shape derivative of their supremum using linearization techniques. For further information
about worst-case problems, outside the domain of structure optimization, we refer to [43] [42].

In this chapter we focus on the optimization of linear elastic structures subject to uncertain
mechanical loads. In section [3.1.2] we present an optimization problem under constraints on the
worst possible value of a continuous functional of the displacement. In the next two sections we
present two different methods to solve shape optimization problems under constraints on the
worst-case scenario for a given functional.

The first, discussed in [3.2] requires the convexity of the set of admissible loads and of the
function mapping the uncertain parameters with the corresponding value of the constraint func-
tion. This first method consists in the replacement of the constraint on the worst-case by a finite
number of deterministic constraints, obtaining an optimization problem that approximates the
initial one. Theorem [3.12] provides a result on the convergence of the solution of the approxi-
mated problem towards the exact solution when the number of constraints increases.

In [3:3] a second method is discussed. After recalling the notion of generalized directional
derivative and of subdifferential in the sense of Clarke, we extend them to the context of shape
functionals. The optimization method, that is discussed in[3.3.3] consists in the identification of
one element of the subdifferential at each step of the shape optimization algorithm, and in the
definition of a direction of descent for the constraint function with respect to it.

Finally, in section we present some numerical results. We compare the two methods in
two different situations. In fig.[3.9b] we optimize the shape of a 3D cantilever subject to a traction
and compression load on its extremity. In section we aim to optimize a disc-like structure
showing a rotational symmetry. The two methods are compared for both examples, highlighting
the advantages of the technique based on the subdifferential in terms of the duration of the
computations, as well as the challenges provided by a problem with a symmetric geometry.

3.1.2 Problem framework

Let us consider the following shape optimization problem, where the objective consists in the
minimization of the volume of the structure, the state solves the linear elasticity equation, and
the mechanical loads applied are uncertain. Let us suppose that g is a random variable that
belongs almost surely to a bounded set G C L? (FN)d. Therefore, the optimization problem can
be written as follows, hiding the dependence from the event space.

Find the admissible shape Q € Sagm
minimizing the volume Vol(£2)

under the constraint sup H(uqg,2) < 7,
gcg

where the displacement ug g € H%D Q)?

solves the elasticity equation (3.1)

—div(o (ugg) = f inQ

oc(ugg)n = g on I'y,
oc(upg)n = 0 only,
ugg = 0 on FD.

88



3.2. A convexity-based approach for the worst-case

We suppose that the constraint functional H(-,-) can be written in integral form as
H(w,Q) = / Go(u(x)) + j1(Vu(x))) dx  for u e H (2)%,
Q

with jo and j; continuous functions. If the mapping g — H(ugq g, (2) is continuous and the set G
is compact, H(ugq g, {2) reaches its supremum for some g € G, and the constraint can be replaced
by maxgecg H(UQg, Q) < TG-

As remarked in [I0], two different points of view can be adopted, according to whether the
functional affected by the perturbation acts as the objective of an optimization problem or as
a constraint. If the objective of the optimization is the minimization of the maximal possible
level of a functional, the problem can be formulated as a min-max problem. This interpretation
can also be applied to the case of constrained optimization problems where an upper bound
on the maximum of a functional is imposed. However, this constraint can also be interpreted
as imposing an upper bound on the constraining functional for all possible configuration of the
uncertain parameters.

3.2 A convexity-based approach for the worst-case

3.2.1 Definitions of convex sets and functions

Before describing the first approach, we recall a few definitions about convex functions and sets.

Definition 3.1 (Convex function). Let X be a vector space. A real valued function f: X — R
is convex if, for all x1,x2 € X such that x1 # X, the following inequality holds

fltxs + (1 =) x2) <tf(x1) + (1 —1)f(x2), for allt € (0,1). (3:2)
If the inequality (3.2)) is strictly satisfied, the function f is said to be strictly conver.

In other terms, a function f is (strictly) convex if, for any pair of points (x1,X2), the graph
of f is (strictly) below the segment connecting x; to Xa.

Definition 3.2 (Convex set). A subset S of the vector space X is a convex set if, for all
x1,X2 € S and for all 0 < t < 1, the point yx, x,(t) = tx1 + (1 — t)x2 belongs to S. The set
S is said to be strictly convex if yx, x,(t) belongs to the interior of S. The minimal convex set
containing a set T C X is the convex hull of T, denoted hull(T).

Definition 3.3 (Polyhedral set). A subset P of the vector space X is a polyhedral convex set if
it can be expressed as the convex hull of a set containing a finite number of points in X .

Having stated the definitions of convex functions and sets, we can introduced a classical
result concerning the maximization of convex functionals on convex sets. Such result descends
directly from [209, Theorem 32.3] and its corollaries.

Proposition 3.4. Let f: X — R be a convex and bounded function defined on the vector space
X, and let S C X be a compact conver set. Then, f attains supycgs f(x) in at least a point
X € S, and X belongs to the border OS of the convex set S. Moreover, if S is a convezx, closed,
and bounded polyhedral set, X can be found among the vertices of S.
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Chapter 3. Optimization of the worst-case scenario

hull(7)

(a) Convex hull of a set T. (b) Convex polyhedral set.

Figure 3.1: Examples of the convex hull of a set and a convex polyhedral set in R2.

3.2.2 The Hausdorff distance and the continuity of the constraint

In order to define the concept of convergence for the domains, it is necessary to introduce a
topology on the set of admissible shapes S,qm and among the sets of possible mechanical loads.

At first, we introduce the notion of Hausdorff distance between subsets of metric spaces as in
[138] Definition 2.2.7].

Definition 3.5 (Hausdorff distance). Let M be a metric space provided with the distance da,
and let Ay and Ay be two subsets of M. The distance of a point x € M to a set Ay C M is
defined as

dm(x, Ay) = ylenj1 dm(x,y).

The Hausdorff distance between the sets A1 and Ao is

di(Ag, Ag) = max{ sup da(x,Az), sup dM(y,Al)}.

xEA; yeA2
The fact that dy is a distance between subsets of M is proven in [29, Proposition 1.2].

Let A; and Ag be two subsets of the metric space (M, ||-||) such that dg(A;, A2) = 0. As
remarked in [28], we can deduce that A; = Ay only assuming that both .4; and Ay are closed,
meaning that dy is a metric for the class of compact subsets of M. However said implication
does not hold true for open sets.

In order to define a metric and the notion of convergence for open subsets of M, we limit
our study to uniformly bounded open sets. Let B C M be a fixed compact subset of M. We
can introduce a metric on the class of the open subsets of B as proposed in [I38], Definition 2.2.8
and Remark 2.2.10].

Definition 3.6 (Metric among open spaces and Hausdorff convergence). We consider the fol-
lowing function my defined on the class of subsets of B

muP (A1, Ag) = dg(B\ A1, B\ As).

The function my defines a metric structure on the class of open subsets of B. Moreover, zfg
is another compact subset of M, and A1 and Ay are open sets contained in both B and B, we
have the identity

mu® (A1, Az) = my® (A1, Ag).
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3.2. A convexity-based approach for the worst-case

For the sake of simplicity, if the compact subset of the metric space including all subspaces of
interest is fized, we denote the Hausdorff metric introduced in as my(-,-). Finally, if
{A,}2 | and A are open subsets of B, we say that the sequence { Ay}, | converges in the sense
of Hausdorff towards A if

nh_)rrolo my(Ap, A) =0

H
and we denote such convergence as A,—A.

We recall that the Hausdorff metric myg does not take into account the topology of the open
sets, and it is possible to design two open sets arbitrarily close to each other that are different
from a topological point of view.

The shape functional € — Supgeg H (uq,g,?) is not continuous if S,qm is a generic class of
open domains in R? since it relies on the computation of ug. Therefore, it is necessary to restrict
the class of admissible domains in order to ensure the continuity of the constraint functional.

Definition 3.7 (e-cone condition). Let & be a positive parameter. For any x € R% and any unit
vector &€ € RY, we denote B.(x) the ball of radius € centered in x, and C.(x, &) the open cone of
vertex x (without its vertex), of direction & defined as

C’E(X,E):{yERd : (Y —x,&)ga > cos(e) ly —x| and 0<|y—x\<6}.

An open set A is said to satisfy the e-cone condition if, for all x on the boundary of A, there
exists a unit vector & such that for any 'y € B:(x), the cone C:(y,&) is contained in A. We
denote D.(R?) the set of all open domains in R fulfilling the s-cone condition. For any compact
set B C RY, we denote D.(B) the subset of all open domains in De(R?) contained into B

D.(B) ={A CB : A open, and satisfying the e-cone condition} . (3.3)

This definition can be found in [I38], Definition 2.4.1]. Moreover, according to [I38, Theorem
2.4.7], a domain € satisfies the e-cone condition for some ¢ > 0 if and only if it has a uniformly
Lipschitz continuous boundary.

The continuity of the reduced constraint functional H relies on the following result, proven
in [67] and reported in [I38, Theorem 3.2.13].

Theorem 3.8. We considere > 0, and B C R? to be a compact set. Let {Q,}72, and Q be open

domains in Saam C De(B), and let Qngﬁ. Then, the sequence {uq, },- | converges towards ugq,
where uq s the solution of the elasticity problem on 1 and ugq, is the solution on Q, for all
n > 0.

The result of theorem combined with the structure of the constraint stated in (3.1.2))
ensures that the reduced shape functional {2 — supgcg H (ugg,(?) is continuous on a class of
uniformly bounded open sets satisfying the e-cone condition for some positive €.

3.2.3 Theoretical results

In industrial applications, the principal technique to approximate the solution of problem (3.1))
consists in the identification of a number N of loading conditions and consider them as separate
constraints of the shape optimization problem. From now on, we consider that all admissible
domains satisfy the e-cone condition, that they are uniformly bounded by a compact set B, and
that S,qm is a closed subset of D.(B). We suppose that the set of admissible loads is bounded,
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Chapter 3. Optimization of the worst-case scenario

convex and finite-dimensional, and the mapping g — H(uqg, ) is a convex function. The
objective of this section is to justify the approach of the engineers and provide some results on
the convergence of the solution when the number of loading conditions N increases.

We state all the results of this section for the following generic optimization problem, where
the dependence from the state is kept implicit

Find the admissible shape €2 € S,qm
minimizing the volume Vol(2) (3.4)
under the constraint suph (g, ) < 7.

geg

We suppose that G is contained in a finite-dimensional normed vector space (J, ||||;,), and that
h: G X S.am — Ris a real-valued function. We assume also that S,qn, consists in a class of open
subsets of R? which are uniformly bounded and satisfy the e-cone condition for some € > 0. The
mapping 2 — h(g,2) can be seen as an instance of a family of shape functions depending on
the parameter G. Moreover, we suppose that said functions satisfy the following conditions:

(i) the mapping g — h (g, ) is convex and bounded for all admissible 2 € Syqm;
(ii) for all choice of the parameter g € G, the mapping 2 — h (g, ) is shape differentiable.

A first result on the solution of problem ({3.1)) is provided by the following proposition, which
applies to the case where the set of admissible loads is polyhedral.

Proposition 3.9. Let G be a compact convex polyhedral subset of the Banach space Y with N
vertices g1,...,8N, and h : G X Saam — R a real-valued function satisfying the assumptions

- stated above. Then, the solution of problem (3.4]) is equivalent to the solution of the
following constrained optimization problem:

Find the admissible shape € € Saqm
minimizing the volume Vol(2)

under the N inequality constraints:

h(g1,) <, (3:5)

h(gN,Q) ST.

Proposition follows directly from the application of proposition to the inequality
constraint. Moreover, the formulation of proposition [3.4] as an optimization problem with mul-
tiple constraints makes it conforming with the nullspace optimization algorithm introduced in
[114] 112] and presented in section

Having proven a result on the solution of problem for convex polyhedra, we aim to
extend it to more general compact convex sets. Let G be a compact and convex subset of the
Banach space ), and {G,},~ ; a sequence of convex compact polyhedral subsets of Y converging
towards G with respect to the Hausdorff distance. The next step is the evaluation of the conver-
gence of the minimizers of a sequence of problems in the form . A first important remark
concerns the relation of the admissible sets in two different problems, when the corresponding
sets of parameters are nested one into the other.
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3.2. A convexity-based approach for the worst-case

Lemma 3.10. Let us consider two subsets Gi, Go of the Banach space Y such that Gy C Go.
We denote Ey, Ey the subsets of Saam C D-(B) where the inequality constraint of problem
1s satisfied for the sets of parameters G1 and Go respectively:

Ei:{QESadm : SUp]’L(g,Q)ST}; fOTiE{l,Q}-
g€g;

Then, Ey C E1.

Proof. Let us consider €2 € Es. Since all g1 € G; belongs also to Gy, we have that h(g;,Q) <7
for all g1 € G;. Thus Q € Fj. O

Thanks to lemma [3.10, we can prove the following result about the convergence of the
solutions of a sequence of problems in the form ((3.4)).

Proposition 3.11. We consider {G,},_, to be an increasing sequence of compact subsets of Y
where G; C Gj if 1 < j and such that G = U2, Gi is compact as well. Let h : G X Syam — R be a
function that satisfies the assumptions cmd Sadm C D-(B) closed, and 7 € R be a given
threshold. As in lemma[3.10, we denote E; the subset of admissible domains Syam such that, if
Q € E;, then h(g,Q) < 7 for all g € G;. Finally, we denote E the set of admissible domains
such defined as

E= {Q € Sadm Suph(gaﬂ) < 7-} )
gcg
and we suppose that neither any set E;, nor the set E is empty. Then, the sequence {E;};°; is
decreasing, in the sense that E; O E; if i < j, E = (2 E;, and E as well as all E; are closed
subsets of Saam with respect to its metric my.

Proof. The fact that {E;};2; is a decreasing sequence follows directly from lemma Next,
we prove the identity E = ;2 E;. The inclusion E C N2, E; is, again, a direct consequence of
lemma [3.10] since, for all i > 0, we suppose that G D G;. In order to prove the converse inclusion
we suppose that Q2 € E; for all i > 0. Since we defined the set G as G = |J;2, G;, for all g € G,
there exists a sequence {g;},~; such that g; € G; for all ¢ > 0, and g — g. By hypothesis,
g — h(g, ) is convex on the finite-dimensional space ) and it is bounded. Thus, such mapping
is also continuous (see [209, Corollary 10.1.1]). By the definition of the sets {E;};°; and the
sequence {g;};°;, and by the continuity of g — h (g, ), we deduce that h(g,Q) < 7, and we
conclude that € E.

Let i € N. In order to prove that Ej; is a closed set, we consider the function ®; : Syqm — R,

mapping (2 +— supgcg, 1 (g, €2). Such function is well-defined and continuous on Suqm, since the

set of parameters G; is compact. Thus, we deduce that E; = &, 1[0, M]) is a closed subset of
Sadm- Since E = (2, E;, we conclude that E is closed with respect to the Hausdorff metric in
Sadm as well. O

Now, we can state the main result of this section, which is about the convergence of the
solution of a sequence of shape optimization problems in the form (3.9) with an increasingly
accurate approximation of the set G.

Theorem 3.12. We consider a compact set B C R?, and a family of open domains Sadm,
uniformly bounded by B and closed in D(B). Let h : G X Saam — R be a function fulfilling
assumptions and T € R a given threshold, and {G,},> | a sequence of compact subsets
of Y satisfying the hypotheses of proposition . Let {Q;};2, be a sequence of domains such
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that Q; € arg minge i, Vol(Q) for alli € N. Then, {€;};2, admits a converging subsequence with
respect to the Hausdorff metric, and any Qo in the limit class is a solution of problem .

Proof. Let us consider a sequence {Q,},Loil such that Q; € E; for all n > 0. All sets E; are closed
subset of Syqm C D (B) embedded into one another, and D.(B) is sequentially compact with
respect to the Hausdorff metric [I38, Theorem 2.4.10]. Thus, {€;};-; admits a subsequence
converging towards Qo € D(B), and Q. € E; for all i € N. Thanks to proposition we
deduce that Q4 € E.

Finally, in order to prove that Q. € argmingcp Vol(§2), we reason by contradiction. Let
e >0 and Q. € E such that Vol(Q) = Vol(§2:) + €. Since Vol(-) is a continuous function with
respect to the metric myy, there exists N. > 0 such that, for all n > N, Vol(€,,) > Vol(2.)+¢e/2.
This result is in contradiction with the assumption 2,, € argming.p Vol(€2), since Q. € E C
E,,. Therefore, we conclude that Qu, € arg mingcp Vol(£2). O]

One technique to solve problem for a constraint functional A (-,-) satisfying conditions
and consists in solving an approximate problem where the set of admissible parameters
G is replaced by a convex polyhedral set Gy with NV vertices. Theorem [3.12] suggests that,
by increasing the accuracy of the approximation of G by Gy, the solution of the approximate
problem converges towards the solution of the original one. The approximate problems can then
be solved as simple constrained optimization problem using proposition [3.9}

g2 g2 g2

(a) N =4 by N=38 (c) N =16

Figure 3.2: Approximation of the set of admissible parameters by convex polyhedra with an
increasing number of vertices N.

This approach suffers from two notable drawbacks. The first one is the fact that none of the
polyhedral sets considered by proposition [3.9)is a conservative approximation of the original set
of admissible parameters g. Therefore, for any possible approximation Gy of G, denoting Qn the
solution of the corresponding optimization problem, there exists a parameter g € (G \ Gy) # 0
such that h (g, Qn) > 7. A possible solution to this issue consists in considering a sequence of
polyhedral sets converging towards G* strictly containing G. However, the convergence of the
solutions of the approximated problems towards the solution of the original would be lost.

A second important issue from the numerical point of view concerns the number of points
that are necessary to accurately approximate the finite-dimensional set G. Indeed, as shown in
[38], given a convex set G C R™ of class C? and a tolerance ¢ > 0, the minimal number of vertices
Ng e such that the Hausdorff distance between their convex hull and G is bounded by

Noy > (‘/’(g))n; , (3.6)

€
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3.3. An approach based on subdifferentials

where ¢(G) is a constant depending on the shape of the convex set. Equation (3.6 proves
that the number of vertices that are necessary to approximate a given convex set for a given
precision increases exponentially with respect to the dimension of the space of parameters.
Since any vertex in the approximating polyhedron corresponds to a constraint in problem ,
an exponentially increasing number of constraints has to be evaluated for the solution of the
optimization problem, indicating that this approach suffers from the curse of dimensionality.

3.3 An approach based on subdifferentials

3.3.1 Introduction to Clarke’s subdifferential

A different approach to the solution of problem by a gradient-based method consists in
differentiating directly the constraint function  +— supgeg H(ung,(2). The question of the
derivative with respect to the domain of non-differentiable shape functionals has been consid-
ered in literature from different points of view. The authors of [I70] [3] are interested in the
optimization with respect to non-smooth functionals In [16}, [85) [60], the quantity of interest con-
sists in the first eigenvalue of different functionals, which can be expressed as minima of suitable
Rayleigh quotients. In particular, the approach proposed in [60] consists in the computation of
a semiderivative in the sense of Danskin [87] by applying a result from Delfour and Zolésio [100,
Theorem 2.1, Chapter 10] on the sensitivity of a minimum with respect to a parameter. In this
section we present an approach inspired by the methods of [129], which relies on the notion of
subdifferentiability of nonsmooth functions as introduced by Clarke in [74].

At first, we recall the definitions of generalized directional derivative, strict differentiability,
and subdifferential in the sense of Clarke, as found in [74], Section 2.1].

Definition 3.13 (Generalized directional derivative). Let X be a Banach space, x,v € X, and
f X = R a function which is Lipschitz continuous in a neighborhood of x. The generalized
directional derivative of f in x in the direction v is defined as

t —
f°(z;v) = lim fly +tv) f(y)

Yy—x t

1\ ot
Definition 3.14 (Strictly differentiable function). Let us denote X* the topological dual of the
Banach space X. A real-valued function f defined on X is strictly differentiable in x € X if
it admits a generalized directional derivative f° (x;v) for all v € X, and there exists a linear
functional D}, € X* such that

f? (z;v) = D3 (v)
forallv e X.

Next, we present the notion of subdifferential in the sense of Clarke, introduced in [74] as
"generalized gradient" and extending the results of Danskin [87].

Definition 3.15 (subdifferential in the sense of Clarke). Let f : X — R be a function de-
fined on the Banach space X, which is Lipschitz continuous in a neighborhood of x € X. The
subdifferential in the sense of Clarke of f in x is the subset of X* defined as

Of (x) ={L e X" : f°(x;v) > L(v) for allv e X}.

We state now a result presented as [74, Corollary 2 of Theorem 2.8.2] and referred in [129,
Section 4.2].
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Proposition 3.16. Let X be a Banach space, T a metrizable, sequentially compact topological
space, v € X, and {f(-,t)},c7 a family of functions such that

(1) y v f(y,t) is Lipschitz continuous for all y in a neighborhood U, of = and for allt € T;
(2) for any y € Uy the mapping t — f(y,t) is upper-semicontinuous;
(3) the set {f(z,t) : t € T} CR is bounded;

(4) f(-,t) is strictly differentiable in Uy, and the strict derivative Dy f(y,t) is continuous in
U, xT.

We denote F' : X — R the function mapping y — F(y) = sup,et f(y,t), which is defined, finite,
and Lipschitz continuous in Uy. Moreover, we denote T(y) = {t €T : f(y,t)=F(y)} the
subset of the set of the parameters T where the mazimum in the definition of F(-) is attained,
and we remark that T (y) is not empty for all y € U,.

Then, the subdifferential in the sense of Clarke of F' exists for all y € U, and is given by:

OF (4) = { [ Dyrw.0)dut) : we PITw)}. )

where the notation P[S] denotes the collection of probability Radon measures on a measurable

subset S of T .

Remark 3.17. In [7], Section 2.2] is recalled that any continuously differentiable function in
x € X is also strictly differentiable in . Thus, in proposition we can suppose that f(-,t)
is differentiable in U, and the derivative g—g(y,t) is continuous on U, X T, and the proposition
still holds true.

Let f : X x T — R satisfy the hypotheses of proposition and F : X — R be the
mapping = +— maxc7 f(x,t). Finally, let us consider y € X, and t € T (y) a parameter for
which f(x,t) = F(x). Since P[T (y)] contains the Dirac measure concentrated in ¢, the derivative
g—g(y,f) € X* belongs to the subdifferential OF (y). Moreover, if F' is differentiable in y € X,
the subdifferential reduces to a singleton.

3.3.2 Application to shape optimization problems

Similarly to what has been done in section [3.2.3] we consider a generic optimization problem
without an explicit expression of the state like problem (3.4). For the sake of simplicity, we
denote ® : Sygm — R the shape functional defined as

®(Q2) =suph (g, Q). (3.8)
g€eg

Unfortunately, we cannot apply directly proposition to differentiate ®, since the space Sagm
provided with the Hausdorff metric my defined in (3.6)) is not a Banach space. Such issue can
be bypassed thanks to the definition of the shape derivative according to Hadamard introduced
in section [[.2.1] Indeed, for a given admissible domain Q € S,qm, the deformation field 6 at
d
the core of Hadamard’s moving boundaries approach belongs to the Banach space W1 (Rd) .

With this in mind, we can extend the concepts of subdifferential to shape functionals.
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3.3. An approach based on subdifferentials

Definition 3.18 (Subdifferential of a shape functional). Let Q € Saam be a domain in R?, and
J : Sadm — R a shape functional such that the mapping 0@ — J(Qg) admits a Gdteauz derivative

d
dJ (Q;0) for all @ € WH (Rd> . Then, the subdifferential of J in Q) is defined as

07 (Q) = {L c (leoo (Rd)d>* . 47 (Q:60) > L(8) for all 6 € W™ (Rd)d} .

We can now state a result for shape functionals analogous to proposition [3.16

Proposition 3.19. Let S,am be a family of uniformly bounded open domains in RY endowed
with the topology induced by the Hausdorff metric myg, and G a compact subset of a Banach
space (Y, ||-]]). Let Q € Saam be an admissible domain, and h : G X Saam — R a shape functional
such that:

(i) Qe h (g, ﬁ) is Lipschitz continuous in a neighborhood Uq of Q for all g € G;
(ii) g+— h (g, Q) is convez and bounded for all Q € Uq;

(iii) Q—h (g, ﬁ) is Fréchet differentiable in Uq for any choice of the parameter g € G;

~ a\*
(iv) The Fréchet derivative g—g(g, ) e (Wl’oo (Rd) > is continuous in G x Uq.
We denote ® : S,am — R the shape functional

Q— ¢(Q2) =maxh (g, ),
geg

where the mazimum is attained thanks to the convezity of h(-,g) and compactness of G. Then,
the functional ®(-) admits a subdifferential 0P () in Q, and its expression is given by

00 (@) —{ [ S50 dute) + ne Pio@)] | < (W (r0)").

d
Proof. We consider the class O C Wh™ (Rd) of admissible deformations defined as
d
Oq = {0 S Wl’oo (]Rd) : Qg € UQ}.

We introduce the function fo : G x ©q — R mapping (g,0) — fa(g,0) = h(g,Q). In order
to prove proposition [3.19 we verify that fq satisfies all the hypotheses of proposition [3.16] At
first, we observe that the set G is compatible with the hypotheses of proposition [3.16] since it is
a compact subset of the Banach space ) with respect to the Hausdorff metric myg. The set Oq

d
is a neighborhood of the origin in the Banach space W1 (Rd) .

The conditions - of proposition are satisfied by fo thanks to assumptions
and In particular, the continuity of fq(-,0) for all 8 € Oq is ensured by the convexity

of g — h (g, fNZ) for all Q € Ug. The existence and continuity of the strict derivative of 8
fa(g, 0) follow from assumptions and and from remark Therefore, the function
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0 — Fo(0) = maxgeg fo(g, 0) is well defined, and it admits a subdifferential 0Fq (@) with the
following expression

o (6) = { | (. 0)du(e)  we Plo@]} < (Wi (=4)")

Thanks to the definitions of the functionals ® and Fy we have that, for all @ € ©q, ®(Qy) =
Fq(0) and, in particular, ®(Q2) = Fo(0). Thus, we conclude that 0® (Q2) = 9Fq (0). O

Proposition provides a method to compute elements of the subdifferential 9® (£2) by
computing a value of the parameter g € G where h (2, g) attains its maximum. Differently from
the case studied in section @ the convexity of the set G of external loads is not required. It
should also be remarked that any element of the subdifferential defines a direction of descent
for the functional ®, albeit not necessarily optimal if 0® (€2) is not a singleton.

3.3.3 Algorithmic implementation

Let us consider the same notations of proposition G is a compact subset of a Banach
space (Y, [|]]), b : G X Saam — R a function satisfying the conditions |(i)| and @ (-) the shape
functional mapping €2 — maxgeg h (g,€) as in (3.§). In section@ we provided the theoretical
framework for the computation of the subdifferential of @ ().

Here we provide a procedure to compute one element to the subdifferential O® (€2) in the
context of the optimization algorithm presented in section [I.3] The procedure can be divided in
two steps. First, we identify a parameter g € argmaxgeg h (g,§2) C G for which the maximum
of h(-, ) is attained. The maximum is attained in at least one point, since G is compact, and
h(-,€) is convex and bounded (see proposition . Next, the shape derivative of the term
h (g, Q) is computed using the classical methods of section Proposition ensures that
the shape derivative of h (g, §2) belongs to the subdifferential 9® (€2).

Different possible methods can be considered to identify the parameter g depending on the
nature of the set G and the function A (-,2). If the mapping g — h(g, ) is differentiable
with respect to g and G is a subset of a Hilbert space, a simple gradient-descent method can
be implemented to identify g. If further hypotheses apply on the constraint functional or on
the set of admissible parameters, ad hoc methods can be used. An example for the case where
g — h(g,Q) is a quadratic function and G an ellipsoid is provided in section

3.4 Numerical results

3.4.1 3D Cantilever

As first numerical application, we consider the optimization of a 3D cantilever structure under
a constraint on the mechanical compliance. The initial condition of the structure is presented
in fig. 33} the structure is clamped on the four corners marked as I'p, and a mechanical load g
is applied on the region I'y on the opposite side.

We suppose that the load g applied to I'y consists of two components: one of traction-
compression (oriented along the x axis), and a vertical one (along the z axis):

g = Xe; + Ze,. (3.9)
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3.4. Numerical results

We suppose also that the parameters X and Z belong to the intervals [—g,,d,] and [-7,,7,]
respectively. Moreover, we suppose that they are bounded by the following inequality:

S+ <L (3.10)

The inequality (3.10]) states that the set of admissible mechanical loads can be parametrized by
an ellipse in R? with semi-axes equal to g, and g,. To sum up, the optimization problem can
be expressed as

Find the admissible shape Q € Saqm
minimizing the volume Vol(2)

under the constraint supC (ugg, Q) < 7,

g€y
where the displacement ug g € HILD (Q)?
solves the elasticity equation (3.11)
—div(o (ugg)) = £ inQ,
oc(upg)n = g onlwy,
oc(upg)n = 0 only,
upe = 0 on I'p.

The numerical parameters considered for this problem are reported in table The simu-
lations of this section and of section have been performed on a Virtualbox virtual machine
Linux with 1GB of dedicated memory, installed on a Dell PC equipped with a 2.80 GHz Intel
i7 processor.

4
4
— .

Figure 3.3: Structure of the 3D cantilever structure. The region I'y where the uncertain me-
chanical load is applied is marked in red, while the clamping region I'p is highlighted in grey.

In order to solve the optimization problem (3.11)) we consider both the polyhedral approx-
imation approach of and the method based on the subdifferential as in section Both
methods can be applied since the set G is convex, the mapping g — C (ung, ) is a convex
function, and the compliance operator satisfies the conditions |(i) of proposition
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Geometry of the structure

cross section length ls 1.0cm

longitudinal length Uy 2.0cm

sidelength of I'p 0.3 cm

radius of I'y 0.1cm
Elastic coefficients

Young’s modulus E 200 MPa

Poisson’s ratio v 0.3
Mechanical loads

compression load [ 25 kPa

vertical load g, 10kPa
Mesh size parameters

minimal mesh size hmin 0.025 cm

maximal mesh size hmax 0.10cm
Thresholds for the inequality constraints

threshold on the compliance T 2.5 x 1072 kPa cm?

bound on the probability of failure D 1.0%

Table 3.1: Numerical data concerning the geometry and the mechanics of the cantilever structure

of fig.

For the polyhedral approach, we approximated the ellipse G by polygons with 4, 8, and 16
vertices denoted Gy, Gg, and Gy respectively. The polygons G4, Gs, and G are defined as convex
hulls of N points as follows

Gy= hull{(g,sin(2%)e, +g,cos (2T )e,) : ne{0,...,3}; CR%
Gs= hull{(g,sin(2T)e, +g,cos (2 )e,) : ne{0,...,7}; CR?
Gi = hull{(gx sin (2{1—6”) e; + g, cos (21”—6”> ey> : nef0,..., 15}} C R%

It should be remarked that, since the compliance is invariant with respect to a change of sign in
the applied load, it is necessary to consider only half of the vertices of G4, Gg, and Gy to define
the constraints of the approximated optimization problem. The structures optimized for the
three cases are denoted as €24, Q2g, and 21 respectively, and are represented in fig. fig.
and fig.

In the subdifferential approach, it is necessary to identify the parameter g maximizing C (-, (2)
at each step of the optimization. We can assume, by proposition that g belongs to the
boundary of G. Therefore, there exists an angle a € [0, 27) such that

g =sinagze; +cosag.e,.

Thanks to the symmetry of the compliance operator, we can restrict the search for a to the

interval [-7,5). The angle o yielding the maximal compliance for a given shape € can be
identified by interpreting the compliance as a quadratic functional. Indeed, there exists a matrix

Mg € R?*2 such that, for all & € [0, 27),
A R sin &
C (uqg, Q) = (sind, cos &) Mg ( cos > ,
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Figure 3.4: Optimal shape 4 resulting from the polyhedron approach with N = 4 vertices.

Figure 3.5: Optimal shape g resulting from the polyhedron approach with N = 8 vertices.

where the load associated to uqg is g(&) = sin &gye, + cosdg.e,. The entries of the matrix
Mg are

[Maly; = mn = /QU (ugg,) : € (ung,) dx,
Moy, =ma = | o (ung.) : € (ung) dx.

Mgl = [Maly; = miz = /QU (ung,) : € (ugg.)dx.

The angle « for which the maximum of the compliance is attained depends on the eigenvector
related to the maximal eigenvalue of Mg. In particular, o can be computed explicitly by the
following expression

s

SR

— 5 ifmyy >0 -
2,6‘ 1. iz = where 3 = arcsin 2 m;l . (3.12)
+5 ifmya <0, 2\/(%) + m%Q

]
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~
4
a
- -

Figure 3.6: Optimal shape Q14 resulting from the polyhedron approach with N = 16 vertices.

The optimal shape resulting from the optimization based on the subdifferential is reported
in fig. [3.7] and we denote it as Qg. In the graph of fig. [3.8]is reported the evolution of the angle
« along the iterations. We remark that « oscillates around 0, underlying the fact that vertical
loads which are orthogonal to the main axis of the cantilever are responsible for the largest
values of the compliance.

4
a
— -

Figure 3.7: Optimal shape (g resulting from the subdifferential approach.

In table we reported the numerical results of the optimization of the cantilever using
the method of polyhedral approximation with three increasing degrees of precision, as well as
the results of the subdifferential technique. The graph showing the progressive decrease of
the volume of the structure is presented in fig. while fig. follows the evolution of the
constraint in each numerical example.

A first remark concerns the slow rate of convergence of the four examples, as shown in
fig. This issue seems to be proper to the 3D cantilever structure, as pointed out also in
[I12| Section 6.2.1]. Next, we can observe in fig. that in all four cases the constraint on
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10-3 Direction of the maximal constraint

[rad]

Angle «

\ \ \ \
200 300 400 500

Iterations

\
0 100

Figure 3.8: Evolution of the direction of the maximal constraint (in terms of the angle «) during
the optimization process.

Polyhedron Subdifferential
N =4 N =38 N =16
Optimization
Duration [min)] 180 187 208 180
Number of iterations 500 500 500 500
Results
Final volume Vol(£2) [em?] 0.369 0.418 0.428 0.419
Maximal constraint  [kPacm?®] | 2.500 x 1072  2.495 x 1072  2.496 x 102 2.499 x 1072
du(Qs, Q) [cm)] 0.1561 0.1361 0.2130 —

Table 3.2: Numerical results for the optimization of the volume of the cantilever under con-
straints on the mechanical compliance, obtained using the Polyhedron method (with an increas-

ing number of vertices), and the Subdifferential method.

Objective _o Constraint
-10
—— Polyhedron G, ”g --- 7 =25x10"2kPacm?
s Polyhedron Gg g —— Polyhedron G,
a1 —_ Poly}%edron 916 2 3 Polyhedron Gg
8, —— Subdifferential . —— Polyhedron Gy
. = k —— Subdifferential
S °0
— \G_/ | " Mm‘ aanchihaty A e ok crotespiatisd
>o - 2.5 R NN D
o
T T T T T T E %‘B T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Tterations

(b) Evolution of the constraint for three instances of the
polyhedron method, and the Subdifferential method.

(a) Evolution of the objective function.

Figure 3.9: Convergence of the objective (volume) and the constraint (compliance) for the
cantilever.
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the maximum of the compliance is satisfied. By comparing the duration of the four simulations
we can state that the method based on the subdifferential is efficient and reliable to solve
problem since it yields a similar result as the three other simulations while requiring
fewer computations of the shape derivative.

Finally, we can see that the four simulations yield similar results, as a consequence of the
preeminence of the vertical load to the optimization of the structure. The fact that the Hausdorff
distances between Qy and (g is of the order of the mesh size for each N € {4,8,16} supports
the conclusion that all four simulations have reached a result close to the exact solution of

problem ([3.11)).

3.4.2 Disc

In this section we consider the optimization of a cylinder-like structure. Once again we aim to
minimize its volume, but we replace the constraint on the compliance on a constraint on the
LS-norm of the von Mises stress. The initial condition is presented in fig. the structure is
fixed on a region I'p on its side, while shear loads are applied tangentially to a ring-like surface
I'x on the top of the cylinder. The optimization problem to be solved is the following:

Find the admissible shape Q2 € Sagm
minimizing the volume Vol(2)

under the constraint sup |sp (uq)|s < 7,
geg

where the displacement ug ¢ € H%D (Q)?

solves the elasticity equation (3.13)
—div(o (ugg)) = f inQ,
o (uQ,g) n =g on FN7
oc(upg)n = 0 onlTy,
uge = 0 on I'p.

Similarly to the model considered in the previous section, we suppose that the load g can
be written as sum of two terms, aligned with the axes x and y

g=Xe; +Ye,.

We suppose that the intensity of the applied force is bounded by g, so that the set of admissible
loads G can be parametrized by a circle in R? with radius g. The geometric and material
properties of the structure, the mesh size, the maximal value of the applied force and the
threshold 7 on the LS-norm of the von Mises stress are reported in table

Similarly to the previous section, we consider three different approximations for the polyhe-
dral approach, where G is replaced by inscribed regular polygons with N = 4, 8, and 16 vertices
denoted G4, Gg, and Gy respectively. These polygons can thus be defined as convex hulls of N
points as follows

Gi= hull{g (sin(%T)e, +cos(%T)e,) : ne€{0,...,3}; CR%
Gs= hull{g(sin(2T)e, +cos(Z)e,) : ne{0,...,7}} CR%
Gig = hull{§ (sin (21”—6”) e, + cos (%) ey) i n € {O,...,15}} c R2.

[\
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Figure 3.10: Structure of the 3D disc structure. The region I'y where the random load is applied
is marked in red, while the clamping region I'p is highlighted in grey.

Geometry of the structure

height of the domain 12.0cm

maximal radius of the romain 12.0cm
Region I'y

inner radius of I'y 4.0cm

outer radius of I'y 6.0 cm
Region I'p

thickness of I'p 2.0cm
Mesh size parameters

minimal mesh size hmin | 0.75cm

maximal mesh size hmax | 1.25cm
Elastic coefficients

Young’s modulus E 200 MPa

Poisson’s ratio v 0.3
Mechanical loads

maximal load in any direction g 10 kPa

threshold on ||sp||g T 5.0kPa

Table 3.3: Numerical data concerning the geometry and the mechanics of the disc structure of

a!
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Thanks to the symmetry of the constraint with respect to a change of sign in the applied
force (and thus in the displacement ugg), only N/2 constraints need to be evaluated at each
step of the solution of problem . The structures resulting from applying the polyhedral
approximation method are shown in fig. fig. and fig. [3:13] and denoted as €y, Qs, and
Q16 respectively.

Contrarily to the example discussed in section [3.4.1] the increasing refinement in the ap-
proximation of G results in structures that differ significantly from one another. Indeed, we can
see how 4, represented infig. [3.11] is optimized to resist the forces applied in the directions of
the four edges of G4. The structure g of fig. is similar, but its four branches are wider,
responding to forces oriented in the direction bisecting the main axes. Finally, {216, shown in
fig. is characterized by a rotational symmetry, thus resisting to forces applied in 16 different
directions.

Figure 3.11: Optimal shape €4 resulting from the polyhedron approach with N = 4 vertices.

The similarities between the two cases allow to use a similar parametrization of the set G.
Let us denote g the element of G maximizing the constraint functional. Thanks to the convexity
of the mapping g — ||sp (uq)||¢ proposition applies, and we deduce that g belongs to the
boundary of G. Thus, there exist a € [0, 27) such that

g=7(sinae, +cosaey).

The constraint functional considered in problem is the L-norm of the von Mises stress,
which is not a quadratic function. Therefore, the method used in section to identify
the load maximizing the constraint functional cannot be applied. Instead, we identify the
value of o maximizing the constraint function by applying the Newton method to the function
a— (|lsp (UQ)HG)G. It should be remarked that such a function can be expressed analytically in
terms of the displacement fields generated by the application of the loads ge, and ge,. Thus its
evaluation is extremely fast and does not require the solution of an expensive boundary value
problem. Once again, thanks to the symmetry of the constraint under a change of sign of the
mechanical load, the search of the critical direction o can be limited to the interval [-F, 7). The
shape (g resulting from the application of the subdifferential approach is reported in fig.

106



3.4. Numerical results

Figure 3.12: Optimal shape g resulting from the polyhedron approach with N = 8 vertices.

Figure 3.13: Optimal shape €14 resulting from the polyhedron approach with N = 16 vertices.
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Figure 3.14: Optimal shape Qg resulting from the Subdifferential approach.

The numerical results of the optimization performed using the polyhedral approximation
and the subdifferential method are reported in table In fig. we plotted the value of the
maximal constraint throughout the optimization: firstly for the three instances of the polyhedral
approximation algorithm (fig. , next comparing them with the evolution of the constraints
for the subdifferential approach (fig. |3.15b]). The trend of the objective function for all four
simulations is represented in fig. In fig. we report the evolution of the angle «
parametrizing the direction of the load maximizing the LS-norm of the von Mises stress at each
step.

The method of subdifferential yields an optimal structure 2g with rotational symmetry
similar to the most precise polyedral approximation €214, as shown by fig. If we assume that
(g is representative of the exact solution of problem , the comparison of the illustrations
of the optimal shapes validates the convergence result of theorem Indeed, the similarity
between (2 and 2g increases when Gy approximates better the original set G. This statement
is corroborated by the numerical computation of the Hausdorff distances between ()¢ and the
shapes resulting from the polyhedral approximation, as shown in table [3.4}

By looking at the graph of fig. [3.15D] we remark that the constraint on the maximum of
the LS-norm of the von Mises stress is overall satisfied by the method of subdifferential, but
more significant perturbations can be observed. A more difficult convergence compared to the
polyhedron method can be remarked in fig. where a slower decrease in the objective
function is evident, to the point that a larger number of iterations has been necessary in order
to reach a stable configuration (200 for the polyhedron method and 300 for the subdifferential).
Both issues can be justified by the rotational symmetry of the optimization problem. As the
graph in shows, the critical direction « varies widely at each step of the optimization
algorithm, even from one iteration to the next.

By comparing the duration of the simulations as presented in table [3.4] we remark that the
subdifferential approach is overall faster than the polyhedral approximation, since it requires
fewer evaluations of the constraint functional. Therefore, the shorter duration of each step
compensates the smaller contribution of each iteration to the decrease of the objective function.
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Constraint Constraint
= ---5.0kPa = ---17=>5kPa
g —— Polyhedron G4 i 10° 4 —— Polyhedron G4
40 —— Polyhedron Gg 1 —— Polyhedron Gg
— —— Polyhedron Gi¢ _— ] —— Polyhedron Gi¢
0 | 002 4 —— Subdifferential
<3 I = E
2 20 I\ - ]
i) \ ”\ 5 ]
210) fa]SY
b \ 20 10 4
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Iterations Iterations
(a) Evolution of the constraint for three instances (b) Evolution of the constraint for three instances
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Figure 3.15: Convergence of the constraint (LS-norm of the von Mises stress) for the disc struc-
ture.

Objective Direction of the maximal constraint
—— Polyhedron G,
1,500 H —— Polyhedron Gg 1+
fg —— Polyhedron G §
L, —— Subdifferential =
S 1,000 H @
3 ;i
= <
500 / -9
\J
T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations
(a) Evolution of the objective function. (b) Evolution of the direction of the maximal con-

straint (in terms of the angle «) during the opti-
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Figure 3.16: Convergence of the objective (volume) for the Polyhedron and Subdifferential
methods, and direction of the largest constraint under the Subdifferential method for the disc
structure.
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Polyhedron Subdifferential
N=4 N=8 N=16
Execution of the optimization
Duration of the optimization  [min] 189 296 499 159
Number of iterations 200 200 200 300
Results
Final volume Vol(2) [cm®] | 666.27 692.18  751.46 874.07
Maximal constraint [kPa) 5.015 5.053 5.164 5.183
du(Qs, Q) [cm] | 3.001 3.037 1.347 —

Table 3.4: Numerical results for the optimization of the volume of a disc structure under con-
straints on the LS-norm of the von Mises stress, obtained using the Polyhedron method (with
an increasing number of vertices), and the Subdifferential method.

3.5 Conclusions and perspectives

In this chapter we have compared two different methods to address shape optimization problems
under constraints on the worst-case scenario of a given functional. The first method can be
applied only to convex functions of the displacement, and relies on the approximation of the set
G of admissible loads by polyhedra. This method corresponds to the design of a structure which
complies with the constraint in a finite number of representative load cases. The second method
is based on the computation of an element of the subdifferential of the constraint by identifying
the critical element of G maximizing the constraint, and differentiating in the relative direction.

The numerical simulations of section support the efficacy of both methods in the case of
an admissible set of loads parametrized by an ellipse in R?. We observed that in both cases the
method based on the subdifferential is faster than the polyhedral approximation since it requires
fewer evaluations of the constraint function. However, we remark that, if the admissible load
maximizing the constraint is not unique, the convergence of method based on the subdifferential
is degraded, and smaller and more numerous optimization steps are required to converge.

One way to improve the method of the subdifferential consists in taking into account multiple
elements of the subdifferential of the constraint functional. Such variant of the algorithm would
require to identify if multiple mechanical loads maximize the constraint for a given shape. A
possible direction of development could be the adaptation of the proximal algorithm to shape
optimization, since it already relies on the subdifferential in the sense of Clarke. Refer to
[27, 190] and the references therein for further information on the proximal algorithm in non-
smooth optimization.
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Chapter 4

Shape optimization of a polynomial
functional

A large portion of this chapter has been submitted to publication as a journal paper under the
title Shape Optimization of Polynomial Functionals under Uncertainties on the Right-Hand Side
of the State Equation, co-written by Fabien Caubet, Marc Dambrine, and Jérome Maynadier.
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4.1 Introduction

The design of mechanical structures satisfying several constraints of different natures is a difficult
problem for engineers, and shape optimization techniques offer an automated approach to devise
original designs which satisfies the given constraints. However, as discussed in chapter [3] it is
unrealistic to consider that all information on the problem is perfectly known for industrial
applications. In the previous chapter, from section forward, we focused on optimization
problem with constraints on the worst-case scenario for an uncertain functional. Here, we
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consider a different approach to topology optimization under uncertainties, where the boundary
conditions are modeled by random variables, and the constraint is imposed on the expected
value or the variance of a given functional of the state.

This approach, known in the literature as Robust Topology Optimization (RTO) [121] has
been studied by numerous different authors, providing multiple perspectives on the problem.
In [64] the mean and the variance of a generic objective functional are estimated by using a
dimension reduction method followed by a Gauss-type quadrature sampling, while the shape
sensitivities are computed by using the analytic derivatives of the random moments. In [11]
the authors address the issue of small uncertainties on the material properties, on the external
loads, and on the geometry of the structure by linearizing the perturbation around their mean
value. In [26] 245] [79, 212] the authors consider RTO problems for structures with uncertainties
on the applied loads and on the shape itself, where the structure is represented using density
methods. In particular, in [245] the propagation of the uncertainties is studied using a polynomial
chaos method, while in [2T1], 212] the authors represent the uncertainties by a Karhunen-Loéve
expansion, and model their propagation by a Sparse Grid Collocation method. The issue of
the curse of dimensionality is addressed in [97], where the uncertainties are taken into account
using a Stochastic Gradient Descent algorithm. In [76] [30] the structures are represented by
a level-set technique, and the optimization under uncertainties is performed using techniques
of stochastic programming. The authors of [I06] study the minimization of the mean and the
variance of the mechanical compliance of an elastic structure, considering an exact expression
of the random moments and their sensitivities with respect to the shape. A similar approach
is adopted in [80], where the authors provide a method to compute analytically the expected
value of a generic quadratic functional in terms of the first and second moments of the random
variables modeling the uncertainties.

The present chapter adapts and extends the approach of [80] to the case of polynomial
functionals of the right-hand side of the state equation. We consider the shape optimization
problem as an instance of a PDE-constrained optimization problem. We suppose the right-hand
side of the partial differential equation to be subject to uncertainties, without any assumption on
their amplitude. The uncertainties are modeled as random variables, by using suitable Bochner
spaces. Let us consider a functional of the shape that can be expressed as a polynomial function
of degree m of the solution of the state equation. Similarly to the procedure detailed in [80],
we introduce a deterministic correlation tensor of order m, which depends only on the first m
random moments. Consequently, it is possible to compute exactly the expected value of the
functional of interest, as well as its shape derivative.

The main contribution of this chapter is theorem that provides the analytic expression
of its shape derivative in terms of the first m moments of the random variables modeling the
uncertainties, without any further assumption on their distributions. In the case of a finite
dimensional valued uncertainty, tensor representation of the uncertainties is not needed and we
present in proposition the corresponding result. Notably, no sampling method requiring a
large number of simulations is used in the method presented here.

An application of the proposed procedure is related to the utilization of the L™-norm of a
function as a smooth approximation of its L>-norm (i.e. its supremum) in a given domain.
Indeed, by considering the L™-norm of the stress in the domain as functional of interest, we are
able to derive shapes where, on average, stress is less concentrated than in the ones obtained by
controlling the expectation of the mechanical compliance.

This chapter is organized as follows. In section we recall some definitions and results
about Bochner spaces and tensor products among Hilbert spaces. Section states the main
results of the present chapter: it introduces the correlation operator for multilinear functionals

112



4.2. Mathematical setting

and its applications in the context of shape optimization, with a particular focus on the context
of linear elasticity. Section[4.4land section[d.5|provide two examples of numerical applications. In
section a tridimensional structure is subject to an uncertain load, and its mass is minimized
under a constraint on the LS-norm of the von Mises stress in the domain. Such example adresses
the common concern in structural mechanics in avoiding the concentration of stress in a small
region of the structure. Section treats a bidimensional example, and shows how taking into
account the variance of the compliance in a shape optimization problem can be crucial when the
random variable modeling the mechanical loads are heavily correlated. Conclusions are drawn
in section

4.2 Mathematical setting

4.2.1 Tensor product in Hilbert spaces

In [225] 80] tensor products between Hilbert spaces have been used to work with the stochastic
moment of order 2 of random quantities. In [226], the same technique has been extended to
treat the stochastic moments of order m > 2. Here, we recall the main definitions and results
about the tensor product in Hilbert spaces as presented in [206], 217, 225, 226], [80].

Definition 4.1 (Tensor product in vector spaces). For a positive integer m > 2, let us consider
the vector spaces X1,...,Xy. We denote ‘i?m (X1,...,Xn) the space of all m-multilinear forms
on [[I% Xi. For (Xi,...,Xy,) € [Ii%, &, the tensor product x1 @ ... ® Xy, also written as
Qi xi, is a real valued linear application defined on By (X1,...,Xn) such that, for all Py, €

X

;‘Bm (Xh .. '7Xm);
(@:@) (Pn) = Po(X1, ..., Xp).
=1

If all spaces X1,..., A&, are Hilbert spaces, it is possible to define a product space with a
Hilbertian structure.

Definition 4.2 (Tensor product between Hilbert spaces). Let (Hi, (s >7{1) be m Hilbert spaces,
with m > 2. We define the set'V as

stpan{@xi such that x; € H; Vizl...m}.
i=1

Let (-,-)g : V XV = R be a bilinear operation such that

m

(&ron) -l »
=1 =1

® =1

for any choice of x;,y; € H;. We denote ||-||o the norm induced by the tensor product (-, ). The
operation introduced in (4.1) is an inner product in V [206, Section II.4]. The tensor product

of the Hilbert spaces M1, ..., Hm is the completion of V with respect to the inner product (-,-)),

m

and is denoted @ H;. If all the m Hilbert spaces coincide with a single Hilbert space H, we
i=1

denote their tensor product as H®™.
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Definition 4.3 (Operator norm). For any real valued linear operator P defined on a normed
vector space X, we denote its operator norm as

[Pllop = sup |P(z)].

llzf| =1
For any m-multilinear functional P, : X1, ..., X, — R its operator norm is defined as
|Pnllop = sup  |Pn(&1, ..., &)|
||37i||)(i:1 Vi

As stated in [2I7, section 1.2], a primary purpose of the tensor product is the multilinear
mappings into linear ones.

Proposition 4.4 (Linearization of bounded multilinear functionals). Let us consider a real-
valued, bounded, multilinear functional P : [[;~, H; — R defined on the separable Hilbert spaces

Hi,...,Hm- Then, there exists a unique linear functional ISm : @Z{Hi — R such that ]3m is
continuous, and for all (z1,...,zm) € [[i21 Hi, P (QiL1 i) = P(x1,...,2m).

The existence of the functional P, for any m-multilinear continuous mapping P is often
referred as the universal property of the tensor product [57, Chapter 9] and is proven in [148]
Theorem 2.6.4].

4.2.2 Modeling of the uncertainties

In order to model the uncertainties, we use the formalism of Bochner spaces, which extends
the theory of integration to Banach-valued functions [I41, Chapter 1]. Let (O, A, 1) be a mea-
sure space, characterized by the g-algebra A and the measure pu. We recall the definition of
measurable and integrable functions in the context of Bochner spaces.

Definition 4.5 (u-simple and strongly p-measurable functions). A function g : O — X is said
to be p-simple if it can be written in the form

N
Z XA; X,
=1

where N is a finite positive integer, x; € X, A; € A, and u(A;) < oo for alli € {1,...,N},
and x 4 is the characteristic function for the set A. A function f: O — X is said to be strongly
p-measurable if there exists a sequence {g;};=, of p-simple functions converging to f p-almost
everywhere.

Definition 4.6 (Bochner integral). The Bochner integral of a simple function g : O — X such
that g = Z-]\Ll XA, Xi with respect to the measure i is defined by

N
/Ogduz Z,u(Ai)xi ex.
i=1

A strongly p-measurable function f is Bochner integrable with respect to the measure u if there
exists a sequence {g;};o, of p-simple functions g; : O — X such that

lim [ ||f = gillx dp =0,
o

1—00
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where the (real) integral is intended at the sense of Lebesque. The Bochner integral of such a
Bochner integrable function function is defined as

/fdu:.lim/gid,u e X.
10) i—oo JO

Moreover, the value of/ fdu is independent from the choice of the sequence {g;}; .
@]

Once defined the integration for Banach-valued functions, we can introduce the Bochner
spaces as the equivalent of the usual L? spaces for real-valued functions.

Definition 4.7 (Bochner spaces and equivalence). A Bochner integrable function f : O — X
belongs to the space LP(O,pw; X) for i < p < oo if and only if [ | f||% du < co. A Bochner
integrable function f : O — X belongs to the space L(O,u; X) if and only if there exist a
real positive number r < oo such that u({Q € O : ||fllx >r}) =0. Two strongly p-measurable
function f and g are said to be equivalent if the subset of O where f is different from g has
measure 0. The equivalence relation is denoted as f ~ g. The Bochner space 1P (O, u; X) for

1 <p < 0 is defined as the quotient of LP(O, u; X) with respect to the equivalence relation "~".
Bochner spaces are also Banach spaces with respect to the following norms:

1/p
190 = ( [ 1715 ap) for 1<p<oc
£l =int{r 20 (1R O ¢ [flx > r}) =0}

Having stated the main definition about generic Bochner spaces, let us focus on the case
where a probability measure P replaces the generic measure u. At first, we can remark the
following embedding of Bochner spaces.

Proposition 4.8 (Embeddings in Bochner spaces). Let ¢ and m be real numbers such that
1</l <m<oo. Then, the following inclusion is true:

L™(0,P; X) Cc LY (O,P; X).
In particular, if f € L™ (O,P; X), then f belongs also to L' (O,P; X).

Proof. The proof relies simply on Hélder’s inequality [218, Equation (1.9)]. Let us denote p = 7
and ¢ its conjugate such that % + % = 1. Then, we have

|m 1/p 1/(1
Lt ae= [t rap= (L1 a2) " ([1) 7 = Wfllnionn < o=

We recall the definition of the expectation operator in Bochner spaces and a classical result
about the commutation of the expectation and a closed linear operator.

O]

Definition 4.9 (Expectation). The expectation operator E[-]: L* (O,P; X) — X is the bounded
linear operator such that, for all f € L' (O,P; X),

E[f]:/odeF’ cx.
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The following result, proven by [141), Proposition 1.2.3 and Equation (1.2)] allows to swap
the expectation and a continuous linear operator.

Proposition 4.10. Let X and ) be Banach spaces, f : O — X be a Bochner-integrable function,
and T : X — Y be a continuous linear operator. Then, Tf : O — Y is a Bochner-integrable
function, and

E[T f]=TE[f].

A more general version of proposition is known in literature as Hille’s theorem [141],
Theorem 1.2.4], which does not require 7" to be a continuous operator, but only a closed one on
a subspace of X.

Theorem 4.11 (Hille). Let f : O — X be a Bochner-integrable function valued in the Banach
space X, and let T be a closed linear operator whose domain D(T) is a subspace of X and
has values in another Banach space Y. We suppose that f takes its values in D(T) almost
everywhere and the almost everywhere defined function Tf : O — Y 1is Bochner-integrable.
Then, f is Bochner-integrable as a D(T')-valued function (i.e. the equivalence class of f belongs
to L (O,P; D(T))), E[f] € D(T), and E[T f] = TE[f].

Hille’s theorem is reported in [I41, Theorem 1.2.4]. We can remark that Hille’s theorem is
valid if T is a continuous operator, since all continuous operator is closed (see [141], page 15,
definition of closed operator]). However, [I41, Proposition 1.2.3 and Equation (1.2)] points
out that, for continuous operators, it is not necessary to prove Hille’s theorem to get the same
properties, since they descend directly from the definition of Bochner integral.

4.3 Main results

4.3.1 Correlation operator and multilinear functionals

We begin our study by introducing the correlation operator for multilinear functionals defined
on Hilbert spaces under uncertainties. The random component of the problem is treated by
considering functions defined on suitable Bochner spaces. The correlation operator has been
studied in the context of shape optimization under uncertainties in [80], limitedly to bilinear
functionals defined on Hilbert spaces, and in [225] 226] for bilinear and multilinear functionals.
Let us consider the measure space (O, A, P), where O is the event space, A C 29 is a o-algebra
on O, and P is a probability measure, and let (X, ||-|| ;) be a Banach space. First of all, we can
state a result about the Bochner-integrability of the tensor product.

Proposition 4.12. Let H1,...,Hn be Hilbert spaces, each endowed with the inner product
<"'>HZ~ fori = 1,...,m. Let us consider xi,...,xy, each belonging to the Bochner space
L™ (O,P;H;). Finally, we define the mapping w — Qiv; xi(w) from the event space O to the
Hilbert space @1117{1 Then, such a function belongs to the Bochner space L (O,IP’; @:iﬂ-lz)

Proof. We consider the Hilbert spaces H1,...,Hy, as well as their tensor product @:;Hi as
Banach spaces with respect to the norms induced by their respective inner products. In order to
prove that @7, z; € L! (O, P; ®£1’Hi), we estimate its norm, and we use Holder’s inequality
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extended to multiple terms

[l -l
Slj(/ [l2zi(w) I3, d (wy Hlllele(om)<

O

Next, the correlation operator is introduced. As it is remarked in [80], the literature is not
consistent in the definition of the correlation between random variables. In the present thesis,
we adopt the following definition.

Definition 4.13 (Correlation operator on Bochner spaces). Let (Hi, () >HL> be Hilbert spaces

fori =1,...,m. Let us consider the linear operator defined on [[;~y L™ (O,P;H;), mapping
(Z1,...,2m) to Q%) xi(w). Proposition ensures that the function w — Qirq xi(w) is
Bochner-integrable. The correlation between the m functions x1, ...,y s defined as

Cor(x1,...,xm) =E [@xz(w)] € @Hh
i=1 i=1

and the correlation operator Cor : [[i%; L™ (O,P; H;) — @Zle is a bounded linear operator
associating m random vectors with their correlation. If all arguments of the correlation operator
are the same, we denote Cory, (x) = Cor (z,...,x).

In [225], 226] the term Cor,y, (x) is denoted as the stochastic moment of order m of =.
Finally, we state a proposition that allows the expression of the expected value of a multilinear
expression in terms of a correlation tensor.

Proposition 4.14. Let (O, A, P) be a probability space, Hi, ..., Hn Hilbert spaces provided with
the norms |||y, fori=1...m, and P : [y Hi — R a bounded multilinear operator. Then,
there exists a unique bounded, real-valued, linear operator ]3 defined on @Zﬂ 1Hi such that the
following three statements hold true for all (z1,...,2m) € [1/ty L™ (O,P;H;):

1. P(z1,...,m,) € L1 (O,P),

2. P(z1(w), ..., Zm(w)) = P (QT 2:(w)), for almost all w € O,

3. E[P(x1,...,2m)] = Py (Cor (21, ..., 2m)).

Proof. The first point comes directly from the continuity of the operator P and the application
of Hoélder’s inequality. The second can be deduced from the universal property of the tensor
product (see [57, Chapter 9], [I48, Theorem 2.6.4], and proposition .

In order to prove the third statement, we show that the hypotheses of [I41], Proposition 1.2.3]
(reported in section [d.2)as proposition [4.10)) are verified. The function w +— P (z1(W), .-y Zm(W))
is Bochner-integrable thanks to the first point of this proposition. The operator P,, is continuous,
as proven by the second point of this proposition. Therefore, we can apply [141, Proposition
1.2.3] and conclude

E[P(x1,...,zm)] =E [ﬁ’m (@@)] = <®xl> = P, (Cor (z1,...,Tm)) -
i=1
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4.3.2 Uncertain loads in linear elasticity

From now on, we focus on Robust Topology Optimization problems in the context of linear
elasticity.

Find the admissible shape Q2 € Saqm

minimizing the volume Vol(2)

under the constraint E [H (uq(+), Q)] < 7,

where the displacement ug(w) € Hp Q)¢

solves the elasticity equation

(4.2)
—div (o (ug(w))) = f in Q,
oc(ugw))n = gw) only,
o(ug(w))n = 0 on Iy,
ug(w) = 0 on I'p,

for almost all event w € O.

We remark that, since g € L™ ((9, P; 1.2 (FN)d> is a random process, ug is a random process in
the Bochner space L™ (O, P; Xn) thanks to the usual elliptic a priori estimates. If we consider
the mechanical load applied on I'y to be a random variable g € L™ ((’),IF’; L? (FN)d), we can
conclude that ug(w) € H! (2)? for almost all event w, and ug € L™ (O, P; H! (Q)d). Denoting C

the fourth order elasticity tensor, and ~ : H! (Q)d — L2 (I‘N)d the operator mapping v — v|py,
the problem defining the state equation can be written in variational form

Find ug(w) € V = Hf_ (2)* such that forallveV:
(CVuo(w), Vv)12gye = (1(v), 8(W))2ry e

where

(4.3)
(CVua(w), VV) 20y = /Q (CVuga(w) : Vv) dx,

()8 oy = [ () v

I'n
For simplicity, we suppose that all admissible shapes in S,q, share the portions I'y and
I'p, constraining the displacements fields 8 € ©ygm C WH™ (Rd,]Rd> to be equal to 0 on these

surfaces. Moreover, we focus our study on functionals P with the following structure
PY(vy, ... V) = /Qq()(vl(x), oLV (x))dx + /qu(VVl(x), ., Vv (x)) dx, (4.4)

where qo : [Ti%; R? - R and ¢ : I, R4 _ R are multilinear and continuous.

Without any further assumption on the domain, problem can be affected by regularity
issues [165), 133, b0]. Indeed, the Lax-Milgram theorem ensures that, for almost any w € O,
ug(w) € H' (Q)%. However, for P?(ug(w),...,uq(w)) to be well-defined we must require that
ug(w) € W (Q). In order to verify such condition we consider that, for all admissible domain
Q) € Sadm, the portions of the boundary where Dirichlet and Neumann conditions are applied
are fully separated, meaning that

Tpn (I'nUTy) = 0 (4.5)
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Figure 4.1: Example of a domain Q where the condition (4.5) is satisfied, since the Neumann
and Dirichlet portiond of the boundary are fully disjoint.

as showed in fig.
We recall the following result on the regularity of the solution of boundary value problems.

Proposition 4.15. Let Q C R be a bounded domain of class C*+2, with k integer. We suppose
that its boundary can be divided in three parts I'p, I'y, and Ty mutually dzsyomt with strictly
positive measure, satisfying the condition Let us consider g € Hk+3 (FN) . Then, the
solution uq of problem (4.5) belongs to the Sobolev space HkJr2 (Q), and there exists C > 0 such
that the following estimate holds

[uallgrt2o) < Cllgl (4.6)

H“z ('n)

Proof. At first, we remark that g, extension of g to I'yv U I'g such that g|p, = 0 belongs to
k+3 d —
H*"2 (I'y UTg)". Moreover, ||gHHk+%(FN) = ”g||Hk+%(FNUFO)'
Under the hypothesis (4.5)), the elliptic regularity estimates apply on the entire domain Q.
In particular, there exists some constant C' > 0 such that (see [218, Theorem 8.29])

ooy < € (I0aluzqye + 18]yt oy ) (4.7)

By the coercivity of the bilinear form and the Poincaré and trace inequalities, there exists three
positive constants «, C7, Co such that

0l ) <+ (CVu0, Vua) oy = ((00), 82y ¢
< Cl HUQHLz(rN)d HgHLQ(FNUI‘O) <y HuQHHl(Q) H§HL2(FNUFO) :
Injecting this result into (4.7]) we conclude that
oz < € (ualionie + 1Bllyeed yr,
<G (CalBlaqyore) + 18hgess o) < €18 hgerd e
for some positive constant C'. 0
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The following result details the computation of the shape derivative of PQ(uQ7 ... ugq) for
a deterministic problem. We remark that, even if we only need uq to be in W%];n Q)% to define

P%(ug, ..., uq), we require the higher regularity in VV1 2m=2 ()% to compute its derivative.

Proposition 4.16. Let k be a positive integer such that k+1 > d/2. Let Q € Saam be a bounded
domain with a CF*2 boundary, g € 1kt 3 (T'n), and ug solutwn of problem (|4 We suppose
that P : T, W%;" ()% = R has the structure presented in Then, uq € VV1 2m=2(Q)),
and the quantity PQ(UQ, ...,uq) is differentiable with respect to Q. The adjoint state WQ solving
the following boundary-value problem is well-defined in H' ()

—divCVwq = Z 0iqo(ugq, . ..,uq) — divd;q1(Vugq,...,Vug) in Q,

(CVWQ)I’I = Z 8iq1 (VUQ, ceny VUQ)H on FN @] Fo, (48)

i=1
wo = 0 on I'p,

where 0;qp and 0;q1 denote the derivative of qo and g1 with respect to the i-th component of

their respective arguments. Finally, the shape derivative of PQ(UQ, ...,uq) can be expressed as
follows

d o

P, u0)(6) = [ (a(ua(s) - ua(s) (6 -n) ds

de To (4.9)

+ [ (a1(Vua(s),..., Vua(s))) (6 - n) ds - / (CVua(s) : Vwa(s)) (6 - n) ds.
FU FO

Proof. At first, we prove the regularity of ug to ensure that P%(ugq,...,ug) is well-defined.

The displacement ug solves the elliptic boundary-value problem . Given the regularity
C*+2 of the domain and the fact that g € Hk+3 (T'n), we can apply proposition and prove
that ug € H{i’;Q (). The domain € is bounded and of class C**2, thus it complies with the
cone condition defined as in [2, Definition 4.6]. Thanks to the Sobolev embedding theorem [2]
Theorem 4.12, part I], the space H**2 (Q) is compactly embedded into W™ (Q2) for any p > 2.
Thus, we can conclude that ug € W% 22 (Q) C W%];n (Q).

The shape derivative and the adjoint problem can be computed by the fast derivation method
developed by Céa as presented in section We introduce a Lagrangian function £ : Saqm X

HF+2 (Rd>d x H! (Rd)d — R such that
L (2;0;w) :/ o(1, dx~|—/q1 dx—/CVu Vwdx
—l—/ g v(Ww)ds —|—/ ( - (CVa)n +(a) - (CVW — Z o (V Vﬁ))n) ds.

All arguments of the Lagrangian are independent, since &t and W are defined on the whole
space R?, and not only on Q. The term defined as an integral on the portion I'p of the boundary
enforces the Dirichlet boundary condition, similarly to the proof of [I9, Theorem 7]. The partial
derivative 8—(9 0, W) vanishes when evaluated in @ = ug thanks to the definition of the state
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d
equation (4.3). Thus, for any w € H! (Rd) we have that

L(Quq;w) = /qu(ug(x), cooug(x))dx + /qu(VuQ(x), ..., Vug(x))dx = PQ(UQ, ..., uq).
(4.10)
Let us focus on the adjoint state wq solution of equation (4.8)). The weak form of equation (4.8)
can be written as follows
Find wq € V = H%D ()¢ such that for all v eV :

U m 4.11
<(CVWQ,VV)L2(Q)d = Z/Q&-qo(ug, oug)vdx + Z/Q&-ql(VuQ, ..., Vuq)Vvdx. ( )
i=1 i=1

The well-posedness of problem is proven by the Lax-Milgram theorem. The bilinear
form is the classical elasticity operator, which is continuous and coercive. The left-hand side is
continuous by the definition of the operator P and by the regularity of ug. Indeed, since gg
and ¢q; are m-multilinear continuous operators (see ), there exist two positive constants Cy
and Cj such that

m
loo(y1, - ym)l < Co[] ly;llga for any y1,...,ym € RY,
];1
(Y1, YY) < G 1Y llgaxa for any Yy,...,Y,, € R¥xd
j=1

Thus

iqo(ugq, ..., ug)vdx + Z / 0iq1(Vugq, ..., VUQ)VVdX’
i—1 7%
< Z/ |0iqo(ugq, . .., ug)v| dx + Z/ |0iq1 (Vug, ..., Vuq)Vv| dx

<m<Co/ a7 v ()| dx—i—C’1/ Va0 () 2k Vv (%) [ s dx)
<mCy HVHLz )d HuQHLQ'me(Q)m*l +mCq HVVHLQ(Q)d HVUQHLQM,Q(Q)mfl
< (m(Co + 1) b)) V1l ) -

Having proven that the adjoint problem . is well-posed, we remark that the derivative
811(9 ug, W) vanishes when evaluated in W = wq. Indeed

oL
70

_Z(/ f}/ qu VuQ,...,VuQ))nds

—(Q,uq,wq)(v) = /((CVWQ Vv) dx + s v(v)(CVwgqn) ds

+ / (aiQO(uQ7 s 7uQ)(V) + aiq1(vuﬂa sy VUQ)(VV)) dX>
/ dvaVWQ dx + Z/ diqo(ugq, . ..,ug) — divd;q1(Vug,. .., Vug)) dx

- / y(v) - ((CVWQ - Z 0iq1(Vugq, ..., VuQ)>nds + [ y(v)- ((CVWQn) ds = 0.
I'nULg

i—1 I'p
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Chapter 4. Shape optimization of a polynomial functional

We conclude computing the expression (#.9) of the shape derivative of P®(uq,...,uq).
Recalling (4.10)) and the results of [I38, Section 5] on shape differentiation we obtain
d
PQ(UQ, e ,UQ)(Q) = mﬁ (Q; uQ; WQ) (9)
0 0 d 0 d
= —L (Q;ug; (7] Q;uq; —uq (0 Q; uq; — (7]

= [ (w0(ua(s),--,ua(s)) + ¢1(Vua(s), .., Vua(s)) — CVuq(s) : Vwao(s)) (8 - n)ds.

O

We have proven the well-posedness of the variational problems and the expression of the shape

derivative in the deterministic case. Thus, if we consider the applied load g to be a random
1

variable belonging to the Bochner space L™ (O,IP; HF 2 (FN)), the results of proposition |4.16

apply for almost any event w € O@. Thanks to the framework adopted in [226, Theorem 3.2], we
introduce the following tensorialized bounded linear operators, defined on Hilbert spaces

wot (@) 5 @) st Ca®L Ve o ®L(EVi)
moo (H@)" - (L2 @f)" st V@M vi o @ (Vvi);
o (H@)T = (B2 00N st A @vi = @ viley

Using the tensor notation we can state the following result concerning the computation of
the objective of problem (4.2)) and its shape derivative.

Theorem 4.17. Let Saqm be a class of regular enough admissible shapes sharing the portions
I'p and I'x of their boundaries, so that any Q € Saam %5 of class C*+2 with k+1 > dTm integer.

Moreover, set g € L™ (O,IP’; 1kt 3 (FN)) . If ug solves problem almost surely, then

(i) ugq belongs to L™ (O,P; HlliJ[:Q (Q)d>.

®m
(i) Corp, (ug) € (H%D (Q)d) is solution of the following problem

Find Cor,, (ug) € V = (1}, (@)

such that, for allV €V : (4.12)
(CVmCory (u0), Vi V') (cagaytyem = (V) Cotm (8) a0y

m
Moreover, Corp, (uq) belongs to @ H{f}g? Q)%
i=1

— ®

(iii) Let P2, be the tensorization of the operator P on (H{i*j (Q)) " We denote QO -
RHE™ 5 R and G, : (R*H)E™ 5 R the tensorizations of qo and qi respectively. Then
E [P%(uq, ..., ug)| = P2y, (Cory, (ug)), with

P2, (Cor,, (ug)) = /Q (dom + G Vn) (Corm (00))(x... x)dx. (4.13)
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(iv) The shape derivative of E [PQ(UQ, e ,ug)} can be written as
d O _ ~ o~
d—QE [P (ug, ... Q)] (9) _/Fo (qom + q1mvm) (Corm (uQ))(s, ...,8)(0 -n)ds

—/ (CV,V) (Cor un, wo )( s)(0 - n)ds, (4.14)
)

where the mapping (CV,V) : Hf_(Q) @ Hy_ () — L' (Q) is induced from the bilinear
form (4, W) — CVa: Vw. The term Cor (uQ,WQ) solves the adjoint problem

Find Cor (ug, wq) € W=H}_ (Q)? @ H}_ (Q)?
such that, for all W € W :

<<(CV ® CV) Cor (uq, wa), (V ® V)W>L2(Q)d®L2(Q)d
: (4.15)
(@) W, Cor (g, digo(uq, . - -, u0))) 1 2(ry ) dgr2(0)!
1

1=

+> ((v®@ V)W, Cor (g, 8iq1 (Vuo, - .., VUa))) 2 (ry er o)
1=1

3

Proof. In order to prove we recall that the estimate (4.6]) on the norm of ug holds for almost
any w € O. Thus, the solution of (4.3) belongs to the space H**2 (Q) almost surely. Moreover,

[226, Theorem 2.1] ensures that, since g € L2 (OJP’;H’““/2 (FN)), the random solution ugq of
problem ([4.3]) is unique and belongs to L2 (O,P; HlliJ]gQ (Q)d). Therefore, by the uniqueness of

ug and the elliptical estimates, we can state that ug € L™ ((’),IP’; Hlli'gz (Q)d).

Point can be proven by [226, Theorem 3.2], which ensures the well-posedness of prob-
lem (4.12)) and the uniqueness of the solution in V. In order to prove the regularity of Cory, (ug)
we use point and proposition to show that, since ugn belongs to the Bochner space

L™ ((9, P; HI/EJ[:2 (Q)d), then

Cor,y (ug) = E [(ug)®"] € (B2 (@) "

— m
The existence of the linear continuous operator P, : (H'li‘gQ (Q)d) — R in point |(iii)

is a direct application of proposition Indeed, since Hllig2 Q) C Wllﬂ’;" (©) by the Sobolev
embedding theorem, the restriction of the m-multilinear functional P® to [, HlliJIgQ () is well-
defined. Hence, proposition ensures the existence and uniqueness of the linear operator
P92, such that E [PQ(uQ, ey ug)} = P92, (Cory, (uq)).

The expression (4.13) for E [PQ (ug,. .. ,ug)] derives from the linearity of the expectation
operator

E [PQ(uQ,...,uQ)} —E [PQ(uQ,...,uQ)]
:/QE go(ua(x), . . ., uo(x))] dx+/QIE g1 (Vug(x), ..., Vug(x))] dx
= /Q (qum (Corm (ug)(x,... ,X)) —|—qA1m(§mC0rm (ug)(x,... ,X)>) dx

= /ﬂ (@ + @i Vim) (Corm (u0) ) (x, ..., x) dx = P, (Cory (uq)).

123



Chapter 4. Shape optimization of a polynomial functional

The variational formulation (4.15)) for Cor (ug, wq) in point can be deduced from the ap-
plication of [226, Theorem 3.2] to ug ® wq, knowing that, for almost any w € O, ug(w) solves

problem (4.3) and wq(w) solves problem (4.11)). We remark that, by point uq belongs to
L™ ((9, P; H{f}gQ (Q)d) and, by proposition 4.16} also to L™ ((’),]P’; \7\/11457"_2 (Q)d . Thus

1

(Giao(ua..... u0) + dgr (Vug, ... Vug)) € L (0,17 (@)7)
=1

Since g € L™ ((’), P; HE 2 (FN)) cLm ((’), P;1.2 (FN)d) and by proposition |4.12| we have

g® Y (Bigo(ug, ..., uq) + g1 (Vug, ..., Vug)) € L' (O,P; L?(Iy)! @ L2 (Q)d) :
i=1

Therefore

Cor (ga Z (aiQO(uQ, s 7uQ) + 8Zq1 (VuQ7 ceey qu))) € L2 (FN)d ® L2 (Q)d
=1

and the right-hand side of the variational formulation in (4.15)) is continuous, assuring the well-
posedness of problem (4.15)) by the Lax-Milgram theorem.
In order to retrieve the expression (4.14) of the shape derivative of E [PQ (uq,... 711Q):|, we

consider the derivative of the objective function for a fixed event w € O found in the expression
(4.9) of proposition [£.16, For each event w € O we introduce the adjoint state wq(w) as the

solution of problem (4.11)). The expression of the derivative of E |:PQ(11Q, . ,ug)} can be found

computing the expectation of proposition and applying the tensorized operators introduced
earlier

%E [PQ(usp . -7“9)} (0) =E {/1“0

“E | [ (fin(0)™") 5. 5)(0-myas + [

- E {/Fo (((CV, V) (ug ® WQ))(S, s)(0 - n) ds]

@V (Corm (ug)) (s,...,s)(0 -n)ds

(qo(ug, . ,ug)) (s,...,s)(0-n) ds]
((CVuQ : VWQ) (s,s)(0 -n) ds}

((flmﬁm(us))(gm) (s,...,s)(0-n) ds]

=[ Qo (Corm (ug)) (s,...,s)(0-n)ds+

Ty To

- /FO (CV, V) (Cor (UQ,WQ)>(S7S)(0 -n)ds

4.3.3 Shape derivatives under finite-rank noise

For this section, we consider k to be a positive integer such that k + 1 > d/2.
The numerical computation of the correlation tensor by the numerical solution problem ((4.12))
is not viable, given the high dimension of the tensor space. Therefore, we limit our study to
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finite-rank perturbations. We consider that g can be written in terms 1of a finite number of

random variables X1, ..., X,, € L™ (0, A,P) and loads g1, ...,gn € H*"2 (I'y) as

N
gw) =Y X;(w) g (4.16)
j=1
We introduce the following notations:
o A myN = {1,..., N}™ is the set of all m-tuples whose elements are integers between 1
and NV;
. lefm) N = {E € A(1,m),~v such that k; = j} C A(1,m),~v is the subset of all m-tuples in

2(1,m),n Whose i-th element is equal to j;

e we denote Cé the number of times the integer j appears in the m-tuple K

—

o finally, we denote a(k) the following quantity:
4 N ol
a(k) = a(ky,....kn) =[] (IE [Xj kD .
j=1

Proposition 4.18. Let Q2 € Syqm be a Ch+2 domain, and P be an m-multilinear continuous
functional following the structure . Moreover, let g € L™ ((’),IP’; Hk+3 (FN)) be a random
mechanical load such that it can be decomposed as in , where the N real random variables
X; € L™ (0,A,P) are mutually independent, and let u; € HIE;Q (Q) be the solution of the
elasticity equation under the load g; for j € {1,...,N}. Then, E [PQ(UQ, e ,ug)] can be
written as

E[P2uq....u0)] = Y (a(k)/ﬁ(qo(ukl,...,ukm)—i—ql(Vukl,...,Vukm))dX)

EEm(l’m),N
(4.17)
Furthermore, we can write its the shape derivative in Q as follows
d 0 ol
oE [P2(ug, ... u0)|(6) = —Zl/ro(e-n) (CVu, : Vw,) ds
! (4.18)
+ Z a(k) (/ (0-n) (go(ugy,...,ug,) +@a(Vug,,...,Vuyg,)) ds>
EGQ((LW)’N To
where the N states uy,...,uy solve the state equation for gi,...,gn respectively and belong

to HIPJSQ (), while the N adjoint states wy,...,wy belong to H_ () and solve the following
adjoint problems

—div ((CVW]) = g Z Oé(E) (aqu(ukl, ey ukm) —div 6Z~q1(Vuk1, ceey Vukm)) m Q,

(4.19)
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Proof. At first we remark that, by the linearity of the elasticity equation, the decomposition
(4.16) can be extended to the displacement ug as

The expression (4.18)) derives directly from the linearity of the expected value and the m-linearity
of P, Indeed, for almost all event w € O,

N J
P (ug(w), ..., ug(w)) = Z ((HXJ,CE>PQ(uk1(w),...,ukm(w))) .

Ee%l(lym),N
Therefore
E [P (ug, ..., u0)| = a(K) P2 (uy,, ..., uy,).
Eem(l,m),N
In order to compute the shape derivative of E [PQ (ug, ..., ug)} we use once again Céa’s fast

derivative method [61), [6] as done for proposition We introduce the following Lagrangian
d d
function £ : Saqm x (H! (Rd) W ox (HY (Rd) )N — R associated to problem (#.2) where the

state equation is seen as a PDE constraint

N
ﬁ(Q;ﬁl,...,ﬁN;Wl,...,WN):—Z{/Q((CVﬁj:VWj) dx—/ g; - Ww,ds

=1 Ty

N
_ / (vvj (CVH,)n +1; - (Cvvaj = 0 (V.. ., Vﬁkm))n> ds} (4.20)
I'p P

+ > {OZ(E)(/QQO(ﬁkl,---,flkm)dX‘F/Qm(Vﬁku---7Vﬁkm)dx)}-

EEQ{(1,m),N
The variables Wi,...,Wy act as Lagrange multipliers for the PDE constraints of the terms
Uy,...,0y. In order to assure that all arguments of the Lagrangian are independent, the terms
Qy,..., 0y and Wy,..., Wy are defined on the whole space R%, and not only on .

By construction, the terms uy,...,uy solving the equation 3875], = 0, are also solutions
of the state equation for the right-hand side g = g;. Thus, we can express the functional
E [PQ(UQ, e ,ug)} in terms of the Lagrangian:

E [PQ(uﬂv ,LIQ)} = ‘C(Q;ulw"?uN;Wl:"' >VAVN)7 (421>

for all Wy, ..., Wy € H! (Rd).
The expression for the shape derivative of the functional of interest is found differentiating
equation (4.21]) with respect to the domain 2

d

d - .

oE [P, u0)|(6) = gL (un. o uniW, L W) ()

oL . . N oL R X (4.22)
=30 (Quy,...,uy, Wi,...,Wy)(0) +]Z::1 o4, (Quy,...,uy,Wi,...,Wy) (u;)
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The term u;- denotes the Eulerian derivative of u;, which is the derivative of the mapping
t — u;(Qp) in t = 0, where u;({%p) is the unique solution of the state equation for the right-
hand side g; and on the deformed domain (9.

Next we remark that, by choosing w1, ..., wy solving the adjoint problem , the quan-

tity a A, vanishes for j = 1...N. Indeed, for any v € H! (Rd> we have

oL
a1,

_Z > / (K)(8iq0 (g, - - - upy ) (V) + 81 (Vugy, ..., Vg, ) : (Vv)) dx

i=1 ke%zljm) N

(Q ula"'qu7W17"'7WN)(V)

— /Q (CVw; : Vv) dx + (w; - (CVvn) +v - (CVw;n)) ds

I'p
/ Z Z (Digo(uy,...,un) — (divdiqi(Vuyg,, ..., Vug,))) +divw; [ - vdx
= 1k Q[ZIJm)N

+ (—(Cij n + (9;q1(Vug,, ..., Vugy )" n) -vds+ [ w;(CVvn)ds =0.
I'n I'p
By taking wi, ..., wy as solutions of problem (4.19) for j = 1... N, we can further simplify
the expression (4.22) for the shape derivative of E | P?(uq, - - - ,UQ):| and obtain

THE[POn - ua)]0) = 55 ¢

For simplicity, we consider the portions I'y and I'p of the boundary to be non-optimizable,
which is equivalent to narrow the set of admissible displacement fields @ to the set O .4, defined
as

Q ul,...,uN,wl,...,wN) (0) (4.23)

Oudm = {9 € Whee (Rd,Rd) :9=0o0nTpU FN} .

Thanks to the restriction of the admissible displacement fields to ©,4,, and to [I38, Theorem

5.2.2], we conclude that the shape derivative of E [PQ(uQ, e ,ug)} can be expressed as
d Q oL
@E |:P (uﬂu ’ Q):|(0) 89 (Q u1,...,U.N,W1,...,WN) (0)_A0(0n)A(S)dS
with
A=— Z (CVu; : Vw;) + Z a(E) (qo(gys - - uk,,) + @1 (Vug,. .., Vug,,)).
i=1 EEQ[(Lm%N

O]

It is worth remarking that the method presented in this section requires the computation of
only N adjoint states. Moreover, the PDEs defining the states uy, ..., uy and the adjoint states
wi,...,wy all share the structure of their left-hand side. This property can be useful for the
numerical simulations since, by inverting once the matrix representing the discretization of the
bilinear form (u,v) — [ (CVu : Vv) dx, we can solve the 2N boundary value problems faster.

The authors of [80] proved that the expected value of a quadratic functional of the displace-
ment and its shape derivative depend only from the first two stochastic moments of the random

127



Chapter 4. Shape optimization of a polynomial functional

variables modeling the uncertain boundary conditions. Theorem and proposition ex-
tend such result to m-multilinear functionals, showing that their expectation can be expressed
as a function of the first m stochastic moments of the uncertainties.

Let us denote 91 (PQ, N ) the minimal number of terms to be computed in and
to express the expected value of the functional and its derivative. In the most general case,
N (PQ, N) = N™, since we have to compute all the terms in the form P (gy,, ..., g, ), as well
as their shape derivatives. However, this number can be reduced if the multilinear functional
P9 shows some symmetries among its arguments. Indeed, if P is completely symmetric, we
have N (PQ,N) - <N+m_ 1).

m

4.4 Optimization under constraints on the von Mises stress

4.4.1 Estimate of the expected value of the von Mises stress

An application of polynomial functionals in shape optimization is related to the approximation
of the L*°-norm of a given quantity in a structure by the L™-norm, for m sufficiently large. A
significant concern in structural mechanics is the design of structures where the stress is as evenly
distributed as possible, preventing stress concentrations that could compromise the integrity of
the component. This requirement suggests the use of functionals with order m > 2 in order to
better penalize stress concentrations than quadratic functionals.

As a showcase, we study the optimization of a 3D linear elastic structure (thus d = 3) with
respect to its volume and the L™-norm of the von Mises stress, for m > 2 even integer. We
suppose that the optimization problem is framed as problem (4.2]), and that the random external

load g € L™ (O,IP’; L? (Q)d) can be decomposed as in equation (4.16)), with k& > 1 integer.
We are interested in estimating the expected value of the following quantity H,,(uqg,?),

representing the L"-norm of the von Mises stress in a structure 2 subject to a random load g.
The functional H,, (-, -) is defined, for m even, as

Q— /Hm(Ung, Q) = Hm(qu, - ,UQg), (4.24)

d
where H,, : {lem (Q)g} — R is such that

m/2

Hm(vl,...,vm):/ﬂ I (0p (vai1) : op (var) | dx. (4.25)

=1

We remark that, because of the concavity of the mapping x — %/, the following bound on the
expectation of the L™-norm of the von Mises stress holds

3=

E 30 ()ey] < /5 E[Hn(o..... ) (4.26)

The functional H,, respects the structure defined in equation . Therefore, we can apply
proposition to compute the shape derivative of the functional Q — H,,(ung,?). The
expression of the functional can be further simplified by considering the symmetries between the
arguments of H,,.

Definition 4.19. We establish the following notation.
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4.4. Optimization under constraints on the von Mises stress

o We denote

N
%€7N:{ﬁ€NNXN : 0<pi; <L and Zpijzﬂ}
ij=1

the set of all N x N integer matrices whose entries are positive and their sum is equal to
N? 40— 1)

0. The cardinality of said set can be computed as Card (B, n) = ( 0

e For !l and N positive integers and p € By n, we define the following multinomial coefficient

(e) B 0
p ngzl (pii!) .

o For N real random variables X1,..., Xy, € L™ (O,P;R) and p € %%71\7, we denote:

m\ N N
K(ﬁ) _ <§) H]E [X‘;:kl(pk]""p]k) ]
7j=1

Having introduced the necessary notation to take the symmetries among the arguments into
account, we can write the expectation of the functional H,,(uqg, ) as

E [Hm(t0g, )] = { 2 IT (oo (a) s on (w)> dx} (4.27)
pE%mN

7,k=1

where each u; solves the state equation problem (4.3)) with the loadings g; for j € {1,...,N}.
Since the functional F' respects the structure defined in equation (4.4), we can apply proposi-
tion and find the following expression for the shape derivative of E [H,(uq g, Q)]

T [Hon (0, D)1(6) = =

N
g (@-n) |- Z (CVu, : Vwj) + Z {K(ﬁ) (op (uj) : op (uk))pj’“} ds.
0 J

=k

Jj=1 ﬁE%%J\] 1
(4.28)
The adjoint states wi,...,wy solve the following adjoint equations
N
—divCVw; = —2updiv <Z Ljrop (uk)> in Q
k=1
N
4.29
((CVWj)n = 2u <Z ijO'D (uk)> n on 'y UI'y ( )
k=1
w; = 0 on FD7

where the terms L, € L™~ (Q) are defined as

bt ( B)pjr (on (1)) : op (p))"* ] (o (0;) : o1 (uz))pje) .

peDB N l#£k
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We can notice also that, thanks to the symmetries of the von Mises functional H,, defined as in

equation (4.25)), it is not necessary to compute all the Card (%%7 N) terms of the sums in the

m

N(N+1)4+m
formulas (4.27) and (4.28)). Instead, the computation of M (H,,, N) = 2 ) terms
2

is sufficient, provided that they are counted with their respective multiplicity.

4.4.2 Numerical application

As showcase we study the following shape optimization problem

Find Q € S,4m minimizing Vol(Q),
where, for all w € O, the state ug € H' (Q)® solves:

—dive (ug(w)) = 0 in Q,
o(ugw))n = gw) only, (4.30)
o(ug(w)n = 0 on Ty,
ug (w) =0 on FD.

with the constraint: E[Hg(Q, uqg)] < Mg,

where My > 0 is a given upper bound for the constraint functional E [Hg($2, ug )]

The structure to be optimized is a cylinder-like shape with axis z = 0, reported in fig. [£.2]
Dirichlet boundary conditions are imposed on a thin stripe on the lateral surface, while the
random load g is applied on a ring-shaped section on the upper surface of the structure. We
consider the mechanical load g € L6 ((’), P; 1.2 (FN)d) to have the following structure

g(w) = g1 Xi(w) + g2 Xo(w) for almost all event w € O.

The loads g1 and g are set as constant vectors on I'y, parallel to the axes = and y respectively,
thus tangent to the surface. Moreover, we consider the random variables X; and X5 to follow
centered Gaussian distributions with variance o; and o9 respectively.

Figure 4.2: Representation of the structure to be optimized. The surface I'p is the thin grey
stripe on the lateral surface, while I'y is the ring-shaped portion of the upper surface marked in
yellow.
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Unfortunately, the hypothesis about the separation of the Dirichlet and Neumann
boundaries cannot be verified in most practical situations. Indeed, the regularity of the dis-
placement ug is limited by the possible appearance of a finite number of singularities around
the junctions of the two portions of the boundary where natural or essential conditions are
imposed [50]. In this section we will not focus on the study of the compatibility conditions to
avoid the emergence of singularities, but we present the results of some simulations where no
difficulty related to the regularity of the solution has been observed.

From the numerical point of view, we represent the structure by using a level-set function
on a fixed mesh T covering a fixed domain D containing every admissible shape in S,qm. The
linear elasticity equations and the adjoint problems are defined on the entire domain
D = QUQC, by using an ersatz material approximation in Q¢ to assure the well-posedness of the
problems (see [1984]). The elasticity and adjoint equations are solved by using the FreeFem++
environment [136].

The numerical results of two different simulations are discussed: in the first case we consider
the random variables X and Y to have an identical distribution (isotropic distribution of the
external mechanical load), while the second case considers an asymmetry in the variances of
the two random variables (anisotropic distribution). The parameters used in the simulation
are reported in table The shapes obtained by the execution of 200 iterations of the null
space optimization algorithm for both cases are reported in fig. [£.3] and the convergences of
the objective and the constraint functions in fig. All simulations have been performed on
a Virtualbox virtual machine Linux with 1GB of dedicated memory, installed on a Dell PC
equipped with a 2.80 GHz Intel i7 processor. The numerical results are reported in table

(a) Isotropic mechanical load (b) Anisotropic mechanical load

Figure 4.3: Optimal shapes for problem (4.30) under isotropic and anisotropic mechanical loads
applied on I'y.

From the observation of fig. [4.3| and fig. [£.4] we remark firstly the efficiency of the null space
optimization algorithm in the solution of the constrained optimization problem . Indeed,
the value of the objective functional is decreasing (see fig. . As seen in fig. the
constraint on the expectation of Hg is saturated in less than 50 iterations for the anisotropic
case. In the isotropic case, we observe some oscillations in the constraint saturation around
iteration 80, which are due to a change in the topology around that step of the optimization.
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Heigth of the domain D 12.0cm
Radius of the cylinder D 12.0cm
Region I'y
inner radius 4.0cm
outer radius 6.0 cm
Region I'p
thickness 2.0cm
distance from the edge of D 1.0cm
Mesh size parameters
minimal element size hmin 0.4
maximal element size hmax 0.8
gradation value hgrad 1.3
Elastic coefficients
Young’s modulus E 15 MPa
Poisson’s ration v 0.35
Ersatz material coefficient cers 1073
Threshold My 3.0 MPa
Variances of the random variables isotropic anisotropic
variance of X3 crf 2.5 1.0
variance of Xo Ug 2.5 4.0

Table 4.1: Numerical parameters for problem (4.30)) for the cases of random variables with equal
and with different variances.

10 Objective Constraint on the L%-norm of the von Mises stress
—— Isotropic E --- My =3.0MPa
Anisotropic 2 6 —— Isotropic
34 Anisotropic

D"

(A3 Bt 1 d b o

Vol(©2)
e
{
(& [Isolg

: j‘ “\WA o

I 9 -
T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
Iterations Iterations
(a) Convergence of the volume of Q, as the objective (b) Convergence of the constraint E [Hg(Q, ug,¢)] — M

Figure 4.4: Convergence of the objective and constraint of problem (4.30)).

Isotropic case Anisotropic case
Number of iterations 200 200
Execution time 129 minutes 148 minutes
Final volume
Vol(Q) 872.93 cm® 890.30 cm?
Normalized saturation of the constraint
(E[He] — Mg)/Mg 0.03002 0.005351

Table 4.2: Numerical results of the solution of problem (4.30) for an isotropic and anisotropic
mechanical load.
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The shapes of fig. show that a branched structure presents the minimal volume ensuring
enough resistance with respect to random mechanical loads. Moreover, if the direction of the
mechanical load g(-) is not uniformly distributed in the interval [0, 27], the branches tend to
align parallel to the most probable direction of the load (see fig. . Finally, we remark that
the constraint imposed in problem is a quite conservative estimate for the expected value
of the L%-norm of the von Mises stress. Thanks to the inequality equation and the fact
that the optimal shapes respect the constraint E [Hg] < Mg, we deduce that the average of the
LS-norm of the von Mises stress in the structures is actually less than the chosen threshold M.

4.5 Optimization under constraints on expectation and variance
of a quadratic functional

4.5.1 Expression of the variance of the mechanical compliance

The technique presented in [4.3.2] can be applied to compute the shape derivative of the variance
of a quadratic functional. As an example, we consider the optimization of a 2D bridge-like
structure with respect to the expectation and the variance of the mechanical compliance. We
recall that the compliance of a shape (2 is defined in section [2.1.2] as the work of the external
forces g acting on §2 and it can be expressed as:

~

C(Q) = C(Q,uq) = /Qo— (u0) : & (ug) dx = Ca(ug, ug), (4.31)

where ug is the displacement computed as solution to the elasticity equation under the appli-
cation of the load g, and Cq, : H! (2)? x H! (€2)? = R is a continuous bilinear functional. From
its expression, and from the fact that the elasticity equation is linear, we recognize that the
compliance is a quadratic functional of the applied load g.

We suppose that the structure €2 is enclosed in a square computational domain D of size
1.0 x 1.0, its lower side I'p is clamped, and a random uniform load g is applied on the upper
side I'y (see fig. . We assume the random load g to have the following structure:

g(w) =80+ X(w)gs +Y(w) gy, forallwe O (4.32)

where X,Y € L*(0O,P;R) are real-valued random variables, and gy = (0, —go), 8 = (gz,0),
and g, = (0, —gy). Under such hypotheses, the variance of the compliance can be written as

Var [C (€, ug)] =Var [Cq(ug, ug) = E [Xﬂ Co(uy, uy)? + 4E [X3 Y] Ca (g, u,) Co(uy, uy,)
+E [X2 Yﬂ (2 Ca(uz,u;) Co(uy,uy) + 4 Co(uy, uy)Q)
+ 4R {X Yg} Ca(uz, uy) Co(uy,u,) +E [Yﬂ Ca(uy, uy)2

— (E[X°]Calus.us) + 2E[X Y]Ca(uz.u,) + E [v?] Cauy.u,)).

(4.33)
Given ,a € [0, F), we define the following random variables:
Xo =Tsina+ Nx cosa,
_ sing s 9 (4.34)
YQ7B—W (Xa E[Xa:|) ‘l_]\]}/’COS/B7
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where T', Nx, and Ny are independent random variables such that 7' is uniformly distributed
on the set {—1,1}, while Nx, and Ny follow a standard Gaussian distribution. The densities of
the variables X, and Y, g for different values of § and « are represented in fig. It can be
remarked that, unless 8 = 0, X, and Y|, g are not independent from one another. However, for
any choice of 3,a € [0, §), they are centered, normalized and uncorrelated, that is:

E[X.] =E[Ya 4] =0, E|XZ| =E|v2s] =1, E X, Yas) = 0.

Therefore, solving different shape optimization problems on structures charged by random me-
chanical loads with the structure (4.32)) for different parameters « and (3 allows to highlight the
importance of the fourth order moment of the random variables.

Density of X, Density of Y, 3
24 _
—a=0 ——a = any value, § =0
a=0.757/2 14 a=057/2,3=057/2
1.5 —a=097/2 —a=0.757/2, 3 =097/2
E 3 —a=0,8=097/2
3 14 T
0.5
e
0 —
T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -2 0 2 4 6

Figure 4.5: Probability densities of the random variables X, and Y,, g for different values of the
parameters o, 5 € [0, 5) as introduced in (4.34).

A deterministic expression for the variance of a generic cost functional has been proposed
in [II] for the case of small perturbations, by using a linearization procedure. However, equa-
tion provides a deterministic expression for the variance of the compliance without any
assumption on the size of the uncertainties, and can be differentiated thanks to proposition

4.5.2 An optimization problem for the variance of the compliance

Given the setting outlined in section we consider the following optimization problem:
Find Q € S,4m minimizing Vol(Q),
where, for all w € O, the state ug € H' (Q)? solves:
—dive (ug) =0 in ©,
o (ug(w))n=g(w) only,
o(ugw))n=0  onTy, (4.35)
ug(w) =0 on I'p.
and the following constraint holds:
E[Co(ug(w), ug(w))] < Mo,
Var [Cq(ug(w),ug(w))] < M.

The terms My and M; are thresholds for the expectation and the variance of the compliance
not to be exceeded.
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At first, we remark that, without the constraint on the variance, the solution of prob-
lem would be the same for any choice of 5,a € [0,5). Indeed, as stated in the
value of E [Cq(ug(w),uq(w))] is a function of Corsy (g, g), which depends only on the first two
moments of the variables X, and Y, g. It turns out that X, and Y, g share the same expected
value, variance and correlation, for any 3, a € [0, §).

The optimization is performed numerically by using the nullspace optimization algorithm on
an adaptive 2D mesh, as in [I14] using the mmg platform for the mesh adaptation [89]. The
results of two simulations are presented, under different parameters o and 3. In both cases, we
used as initial condition the structure shown in fig. [£.6b] The numerical parameters are listed
in table and the results in table 1.4, Once again, the simulations have been done on a Dell

PC with a 2.80 GHz Intel i7 processor, on a Virtualbox virtual machine Linux with 1GB of
dedicated memory.
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(a) Test case (b) Initial condition

Figure 4.6: Representation of the test case described in section and initial condition.

The final results of the optimization, the evolution of the volume and of the expectation and
variance of the compliance in the two cases are shown in fig. 1.7} fig. and fig.

At first, we remark the similarity in the optimal structures for the two problems, represented
in fig. [4.7] However, the structure in fig. [£.74] is thicker than fig. 47D and the final volume of
the solution of case 1 is 31% higher than the volume occupied by the solution of case 2. Such
a gap is explained by the fact that the variance of the compliance is significantly different in
the two cases, as shown by fig. [£.9D] Indeed, in the first case, the constraint on the variance is
saturated first, while in the second case the variance stays small throughout the optimization
and the constraint on the expected value is saturated instead.

This example underlines the importance of the high order moments of the uncertainties
in the domain of robust optimization, in particular when the random variables describing the
boundary condition show a strong dependence from each other.

4.6 Conclusions and perspectives

This chapter focused on a procedure of shape optimization of polynomial functionals, where the
external load applied to the structure is subject to uncertainties. Particular attention has been
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Chapter 4. Shape optimization of a polynomial functional

Geometry of the structure

heigth of the domain 1.0

length of the domain 1.0
Mesh size parameters

minimal element size hmin 0.01

maximal element size hmax 0.02

gradation value hgrad 0.5
Elastic coefficients

Young’s modulus £ 15

Poisson’s ration v 0.35
Mechanical loads

Fixed load gg 1.2

Horizontal term g, 1.0

Vertical term g, 0.3
Thresholds for the inequality constraints

Treshold for the expected value Mg 2.0

Treshold for the variance M, 3.0625

Table 4.3: Numerical parameters for problem (4.35).

(a) Optimal structure for the choice of param- (b) Optimal structure for the choice of param-
eters « = 0.0 and 3 = 0.95% (case 1) eters a = 0.95% and 3 = 0.0 (case 2)

Figure 4.7: Solution of the shape optimization problem (4.35)) for two choices of « and . The
color scale represents the expectation of the concentration of the elastic energy E [o (u) : € (u)].
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Objective
—Case 1: =0, 8=0.957/2
0.8 7 Case 2: o= 0.957/2, f =0
%’ 0.6 -
=
0.4
T T T T T
0 100 200 300 400 500
Iterations

Figure 4.8: Volume of the structure during the optimization problem for two choices of the

parameters a and .

Constraint on the expected value Constraint on the variance

- e

2.5

—Case 1: =0, 5 =0.957/2
21 Case 2: @ =0.957/2, 3=0
- - - Threshold M; = 3.0625

E[C(©,uq)]
Var [C (Q, ugq)]

—Case 1: =0, =0.957/2
0 Case 2: «a =0957/2, =0
- - - Threshold My = 2.0

T \ \ \ T T \
0 100 200 300 400 500 0 100 200 300 400 500
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Figure 4.9: Values of the expectation and the variance of the mechanical compliance throughout

the optimization.

Case 1 Case 2
Parameters for X, and Y, g
Parameter o 0.0 0.95%
Parameter g 0.95 5 0.0

Execution of the optimization

Duration of the optimization 25min49s 30min48s

Number of iterations 500 500
Final volume Vol(2) 0.435348 0.330348
Saturation of the constraints

on the expected value E [Coqg] — My | —0.56886 0.004041

on the variance Var [Cqq] — M; 0.03952 —2.94801

Table 4.4: Results of the numerical solution of problem (4.35) for two choices of o and /3.
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payed to the optimization of linear elastic structures, and we adopted the level-set approach to
topology optimization. The present section proposes an extension of the technique proposed in
[80] to the case of continuous multilinear functionals, and relies on the linearization properties
of the tensor product between elements of a Banach space.

A significant obstacle in the application of this method is the number of terms appearing
in the sums of equation (4.17) (for the computation of the functional of interest), and equa-
tion (for its derivative). Let us recall the definition of 91 (P, N) introduced at the end of
section as the minimal number of terms that are necessary to compute E [P(u,...,u)] and
its derivative, where P is a m-multilinear functional, and u is described by N random variables.
Let us consider three different bounded m-multilinear functionals: a generic functional P, a
functional S which is completely symmetric in its arguments, and the von Mises functional G
defined in equation (4.25]). We recall that in section and in section we found the
following expressions for the number of terms necessary to compute the expectations of such
functionals

N(N+1)

N—l—m—l) and‘ﬁ(G,N)z( 2

m

+5 -1
N(P,N)=N™, ‘ﬁ(S,N)z( m ) (4.36)
2
As represented in fig. the number of terms to be computed increases rapidly with the
degree m of the multilinear functional, even if the number of random variables N is limited to
2 or 3. Naturally, the presence of symmetries in the multilinear mapping greatly reduces the
number of terms to be computed, but the problem can still become too complex if the degree
m required is too high.

N (-,2) for m-multilinear functionals

N (-,3) for m-multilinear functionals

4
10 3 -@® P,,: No symmetry -@® P,,: No symmetry
1 -@- S,,: Complete symmetry e . -@ S,,: Complete symmetry X )
103 4 -@® Hy: Von Mises symmetry g~ . 105 4 - @ Hy,: Von Mises symmetry o -
S E = P
- 1 .’ IS
. ] - . ®
= 102 4 Pie — -
= 10 E e S 103 4 o
i . :  e----® P ./___/o/——"
I ,_::—;:::’.1:—-—--' “““ ¢ ,,/:L___,_)_;::'_i-o ————— ®-- °
3 .:;=:‘—" 10! + .:=;=:
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degree m of the functional degree m of the functional

(a) Case of N = 2 random variables (b) Case of N = 3 random variables

Figure 4.10: Evaluation of the number of terms in the expression of the expectation of three m-
multilinear functionals showing different symmetries among their arguments, when the stochastic
aspect is modeled by two or three random variables.

As remedy to this issue, we suggest to exploit the symmetric nature of the correlation tensor,
and study the application of some techniques of tensor decomposition. One promising solution
consists in the approximation of the discretized correlation tensor as a sum of tensor of rank
1, by using the CP-decomposition. This technique and other kinds of tensor decomposition are
detailed in [I55) [154] [75], and have been implemented in Python libraries as TensorLy [I58].
However, its interpretation and applicability in the field of shape optimization are still to be
investigated.
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Chapter 5

Shape optimization of the
probability to exceed a threshold

Portions of this chapters have been submitted for publication as a journal paper under the title
Shape optimization under constraints on the probability of a quadratic functional to exceed a
given threshold, written in collaboration with Marc Dambrine, Helmut Harbrecht, and Jérome
Maynadier.
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Chapter 5. Shape optimization of the probability to exceed a threshold

5.1 Introduction

In this chapter, we are once again interested in the solution of a constrained shape optimization
problem on a set of mechanical structures subject to a random mechanical loading g = g(w).
Unlike in chapters and we restrict our attention to a constraint functional Q (g, 2) depending
quadratically on the uncertain parameter g. Among such functionals we count the mechanical
compliance and the L?-norm of the von Mises stress. The objective is the identification of the
structure 2 with the smallest volume for which the probability of failure P [Q (g, Q) > 7] does
not exceed a prescribed threshold.

The problem under consideration is known in the literature as Reliability-Based Topology
optimization [I121], and is known to be computationally hard as the probability of failure defines
a quantity of interest which is not smooth with respect to the random parameter w. Numerous
approaches to reliability-based parametric optimization applied to structure optimization are
cited in the manual [69]. The authors of [34, [I80, 147, [152] use a density-based approach to
represent the structure to be optimized, and estimate the probability of failure using a First
and a Second Order Reliability Method [134]. In [I51], 179] the authors use a polynomial chaos
technique to estimate the probability of failure and compute its sensitivity with respect to a
set of parameters characterizing the structure. A different technique is proposed in [76], [11],
where Reliability-Based Topology Optimization problems have been tackled by approximating
the non-smooth functional by a smooth one.

In the present setting of a quadratic shape functional, we will show that the region, where
Q (g, ) > 7 holds, is the exterior of an ellipsoid with respect to the stochastic parameter w. We
will exploit this fact in order to compute the shape derivative of the problem under consideration
and to derive an efficient, deterministic shape optimization algorithm. Unlike in the approach
proposed in [I1], we make no assumptions on the amplitude of the perturbation. Moreover,
in the case of Gaussian perturbations, the computation of the probability of failure and its
sensitivity with respect to the shape are computed by suitable formulas relying on recurrence
relations, without the need of computationally expensive sampling techniques.

The rest of this chapter is structured as follows. In section we introduce the model
problem and compute the shape functional and its shape gradient. Section is then dedicated
to our showcase, where we suppose that the loading g = g(w) is a Gaussian random field. We
develop a suitable quadrature formula which can be used to numerically compute the shape
functional and the associated shape gradient. Then, in [5.5| we present the details of the algo-
rithms used for the numerical simulations, and two examples are compiled in in order to
demonstrate the feasibility of the present approach. In particular, we compare the method pre-
sented in section with the generic expression of the shape derivatives computed in section [5.2]
in the case of centered Gaussian distributions, using the quadrature formulas of appendix [C]
The coefficients for the evaluation of the probability of failure and their shape derivatives are
computed in python using the algorithms detailed in appendix [D}

5.2 The shape optimization problem

5.2.1 Problem statement

Let us consider a family of Lipschitz continuous admissible domains Syqm, in R¢ (for d = 2 or 3)
sharing the portions I'y and I'p, which we suppose to be disjoint. For each €2 € S,4m, we denote
Iy = 09\ (I'NUT'p) the optimizable portion of the boundary. We suppose that the structure to be
optimized is made up of a linear elastic material, characterized by the Lamé parameters A and p,
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and is clamped on I'p. Let further (O, A, P) be a probability space, where A C 29 is a o-algebra
on O and P is a probability measure. A random mechanical load g € L? ((’),IP’; H-1/2 (FN)d> is

applied on the portion I'y of the boundary. In particular, we suppose that g can be written in
terms of a deterministic term g, and a finite number N of random terms in accordance with

gw) =g+ X1(w)+ ... + EvXn(w) for almost all w € O, (5.1)

where X1,..., Xy € L2 (O, P;R) are independent, real-valued random variables, and the terms
8o, ...,Ex belong to H~1/2 (I‘N)d. Then, for almost any event w € O, the displacement ug(w) €
H! (2)? is the solution of the linear elasticity system

—dive (ug(w)) = 0 in ,
o(ugw))n = 0 on Iy, (5.2)
o(ug(w))n = gw) onTy,
ug(w) = 0 on I'p.

In this chapter, we suppose that the functional of interest for the constraint Q (g, () is a
quadratic function of the displacement ug, and thus can be written as

Q (g7 Q) = <u97 Q uQ>H1(Q)7

where @ is a self-adjoint positive definite endomorphism in H! (Q)d. We consider the shape
optimization problem
Find the admissible shape Q € Saqm
minimizing Vol (Q2)
under the constraint
P [<uQ> QuQ>H1(Q) > 7—} < ]57
where the state ug(w)
satisfies the state equation (5.2)) for almost all w € O,

(5.3)

where Syqm is a class of Lipschitz continuous and uniformly bounded domains in R%. Note that
the safety criterion Q (g, §2) is supposed to be a quadratic functional of the displacement ug. As
we intend to adopt the moving boundary approach introduced in section we require that,
for any g € H~1/2 (I‘N)d, the mapping Q — Q (g, ) is differentiable with respect to the shape.

5.2.2 Properties of the safety criterion

dom variables X7,..., Xy appearing in the definition (5.1)) of the mechanical load. For all
i € {1,...,N}, we define the displacement ug,; € H* (Q)* as the solution of the following
deterministic elasticity problem

We shall highlight the dependency of the constraint P <UQ,QUQ>H1(Q) > T} from the ran-
L

—dive (ug;) = 0 in Q,
o(ug;)n = 0 on I'g, (5.4)
o(ug;)n =g  only,
ug; = 0 on FD,
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where o (u) = CVu identifies the Cauchy stress tensor for the displacement u € Hp_ ().
Thanks to the linearity of the state equation (5.2)), the displacement ug € L? (O,P; H! (Q)) can
be written as a sum of N terms, depending from the same random variables as in (5.1

ug(w) =ugo+ug1Xi(w)+...+ug nXn(w) for almost all w € O. (5.5)

The safety functional is quadratic with respect to the displacement, and we can express it as
a quadratic function Uq : RN — R of the random vector X = (X1,..., Xy) € L2 ((’), P; RN) as

Q(g(w), Q) = ¥g (X(w)) = X(w) Mg X(w) + 2boTX (w) + cq, (5.6)

for almost all w € @. The symmetric matrix M € RY*V | the vector bg € RV, and the scalar
cq are functions of the displacements uq 1,...,uq v, and are defined as

* [Mo];; = (uq,i, Qua,)y g foralli,j € {1,...,N};
° [bQ]k = <uQ70,QUka>H1(Q) for all k € {1, .. .,N};

s CO = <UQ70, QuQ:O>H1(Q)'

Since @ is a self-adjoint positive definite operator, the matrix Mg is symmetric, having N
eigenvalues A\q 1, ..., Ag v that are real and strictly positive. We denote Dg = diag {A1,...,An}
the matrix of eigenvalues, and Ug € RY*N the orthogonal matrix of eigenvectors such that
Mg = UgDqUq".

Let us consider the (deterministic) subset of RY Ey,,r containing all the realizations of the
random vector X for which the constraint is satisfied:

Eugr={x eRY : U (x) <7} (5.7)
We denote Tq the following quantity:
TQO=T— (CQ — bQTMQ_le) . (5.8)

Given the properties of the quadratic function ¥ and assuming that 7o > 0, we recognize that
Eyg, r is an ellipsoid in RY, centered in —Mgq 'bg, and whose semi-axes are oriented as the

eigenvectors of Mg and have length r?’T, e ,rj%’T:

7 = fra/Aa for all i € {1,..., N}. (5.9)

However, if 7o < 0, we have that £y, » = 0, and the constraint cannot be satisfied for any p < 1.
For the sake of clarity, we introduce the shape functional ® : S,qm — R defined as the
probability of the constraint to be satisfied:

Q) =P[Q(g ) <7|=1-P[Q(g,Q) >7].

The inequality constraint in problem ([5.3]) can be written alternatively as ® (Q2) > 1 — p. Espe-
cially, ® (2) can be expressed by means of the probability for the random vector X to belong to

the ellipsoid £y, -
O(Q)=P¥o(X)<7]=P[X €&y,

Therefore, ® () can be interpreted as the volume of the ellipsoid £y, ; with respect to the
probability measure Px induced by the random variable X:

& (Q) =P[X € £y, ] = Px (Evyr) = /g 1 dPx (x). (5.10)

Yo,
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5.3. Sensitivity of the exceeding probability

5.3 Sensitivity of the exceeding probability

5.3.1 General formula

In order to solve problem using a gradient-based optimization algorithm, we have to com-
pute an expression for ® (Q2) and for its shape derivative D® (£2). To this end, let us suppose
that the random vector X admits a probability density function f : RY — R¥, such that
fewhl (RN>. Then, in view of (5.10), the quantity ® (Q2) can be written as:

B () = / £(x) dx (5.11)
Euq,r
Moreover, we suppose that all entries of Mg, and bg,, as well as cq are differentiable with respect
to the shape, and we denote their shape derivatives evaluated in 8 € WH™> (Q)d by DMq(0),
Dbq(0), and Deq(0), respectively.

We recognize in the expression of the integral of a constant function over a variable
domain Ey, ;. Let & € WL (RN RN ) be a Lipschitz continuous deformation field in RY. Then,
we can compute the derivative of the mapping £ — P[X € (I + §)&y,, -] thanks to the usual
shape differentiation techniques (see [I38, Eq. (5.24)]). Moreover, since Ey,, - is an ellipsoid and

supposing that £ is also C!, we can apply Hadamard’s regularity theorem (see [I38, Proposition
5.9.1]) and write

Lo e (4 8]

Here, for all s € 0y, -, n(s) € RY is the unitary vector orthogonal to 0y, r in s.

&) = divé(x) f(x)dx = (s) (&(s) -n(s)) ds. (5.12)

5:0 S\I/Q,T 88\1/9,7’

Lemma 5.1. Let us consider an admissible domain Q2 € S,qm and a reqular enough displacement
field @ € Ct N WhH>® (Q)d. We denote Eq g € RN*XN gnd rog € RN the matriz and the vector
respectively defined as

D7q(6 1
20 = 2720) 1 Ly — DM 0): (5.13)

’ 270 2

D7q (0 1
rog = —Mgq 'Dbq(8) + ( ;i( )I[ + 51\/19*1 DMQ(a)) Mg ‘b, (5.14)
Q
where D7 (0) has the expression

D7~'Q(0) = —DCQ(O) — MQ_IDMQ(G)MQ_IbQ + MQ_IDbQ(O). (5.15)

Then, €% : x — EQexX+Troge isa C! Lipschitz continuous displacement field on RN such that
the shape derivative of ® () in Q can be written in its volumic and surface forms as

Do) = [ div(f0¢’x)ax = [ f(s) (€°(s) mis))ds.  (5.10)

S\I/Q ,T ag\IlQ \T

Proof. Let 6 > 0 be such that, for any ¢ € [0,0], T146)0 > 0. We consider the following
dynamical system:

{ x(t;%) =
x(0;x) =

(+10)0,0X(6:X) + Tpy0e  for t €[0,6],x € RY,
for x € RV.

» [l

(5.17)
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Chapter 5. Shape optimization of the probability to exceed a threshold

We set
y(t,0,%) = x(t;X) + M19)0" Dty
and remark that the quantity defined as

y(t,60,%) " Mpi0)0¥ (1 0,%)
T(1+t6)Q
is constant along the trajectories. Indeed, by expressions (5.13), (5.14), and (5.17)), it holds

d _ — _ _ _
&ﬁ(Hte)n(Y(t, 0,%)) = Tire0 { — DFr0)0(0) (¢, 0,%) " M1,40)0y (.0, X)

d

+ %(]H-te)Q (Y(ta 0, X)T&M(]H—te)ﬂyuv 0, i) + QY(ta 0, X)T

d

L, _ d
x (M(H+te)nx(t; X) — aMareeMate)o "bi0)0 + dtb(u+w)9)>

Moreover, for any ¢ € [1, 6], the inequality §(14+9)0(x) < 1 defines the same ellipsoid EW o0
as the inequality ¥ ,9)0(x) < 7. Therefore, the deformation x — (I + F;) x gives the identity
Ev gy = I+ Fi) Ewg 7, where Fy RN — RN is defined as F;x = [j x(s;x)ds for ¢ € [0,4].

We recall that, for any differentiable shape functional F' and Lipschitz continuous domain
D € RY, we have

S0 (y(t,0,%)) =

=0.

Gr(aremp) =35

provided that & : [0,8] — WL (RN ‘RN ) is a differentiable mapping that vanishes in t = 0.

Therefore, since %]—}

F(D) (£'(0)), (5.18)

l_o = X%(0,%x) = Eqex +rae = £%(x), we conclude that

d d
DP (2)(8) = & (L +10)Q) @ /g . f(x) dx y
_d B . ,
5 Lo, S0 = [ (s €000 ax

= /8 G () € s
Il

A first remark on the result of lemma is that, since £€%(x) is a linear function of @, the
expression we found is a Fréchet derivative of the functional ® (). A second observation concerns
the expression of the derivative as a surface integral on a variable ellipsoid. For numerical reasons,
it might be more interesting to reformulate the integral as one on a fixed domain. Thus, we can
use the volumic expression of the shape derivative to write as an integral on the unitary
N-sphere, as is done in the following proposition.

Proposition 5.2. Under the hypotheses of lemma the shape derivative of the functional
® () in Q can be written as an integral on the unit N-sphere Sy_1 in accordance with

~N
Q) / f ( /%QMQfl/QS _ MQfle)
Sny-1

det Mg
X ((EQﬂMQ_l/zS + (I'Qﬂ — EQ,QMQ_le)> . (MQl/zs)) ds.

(5.19)

TQ
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5.3. Sensitivity of the exceeding probability

Proof. In order to prove (5.19), we consider the expression of the shape derivative given by
lemmaand apply the change of variables such that y = \/»Mgl/ 2 (X + Mg~ 1bg> mapping

¢
Eyg.- to the unit ball By. We recall that, for any function f : RY — R¥ that is C* (A) in a
given open subset A of RY, the expression of the divergence with respect to the variable y can
be written as

div f(x) = Mg /2 £ (@Mg—lﬂy -~ Mﬂ—lbg)).

1 ..
\/—%dlvy(

By considering the expression of the displacement field ¢? : RY — RV as ¢ (x) =EBqex+rag,
where Eq g and rq ¢ are defined in equation (5.13)) and equation (5.14}), we get

D (Q)(6) = /g div(f(x) €°(x)) dx

Vo,

= div(f(x) (Eqex+rae))dx

g\I/Q T

=N
Q /dlvy< f (VoMo ™2y — Mo~ 'bg)

(5.20)

detM

_ 1 _ _
X M91/2 (EQ,QMQ 1/2}’ + \/77_?2 (I'Q,B - =l(2,491\/19 le)))) dy.

Observing that the normal vector on the unit sphere Sy_; in any point s coincides with the
vector s itself, the expression ([5.20]) can be written as an integral on the sphere OBy according

to (5.19). O

It is possible to demonstrate proposition [5.2] without the use of lemma [5.1] and relying only
on change of variables, integration by parts, and Jacobi’s formula for the derivative of the
determinant of an invertible matrix [I74]. The alternative proof is reported in appendix .

The expression of the derivative of ® (-) as found in proposition is valid only if the
random vector X admits a C' density function f(-) in an open neighborhood of the ellipsoid
Ew,, - However, if the sensitivity of ® (-) is computed as part of a shape optimization procedure,
such assumption should be verified for all shapes obtained during the execution of the algorithm.
Therefore, it is crucial that the density f(-) is C' in an open subset of RY containing all the
ellipsoids corresponding to €, ..., 8, ... Such condition might be unrealistic if the density f
is not C' on the entire space RY which happens if it is compactly supported like the uniform
distribution. This issue is investigated more thoroughly in section for the particular case
of the uniform probability distribution.

The expression can be reformulated in order to highlight the terms depending on the
argument of the shape derivative 8. We denote {e,...,ex} the canonical basis of RY, and we
consider a basis {Bi’j }giz <j<N for the space of N x N symmetric matrices such that

Bi,j) lfk:’L7 f:j’ .o .
{Bi,j] — 62 ;S if k= j7 ! = i, ﬂij = 1’ i = I (5.21)
k0 7 ’ 1/v2, ifi#j.

0, otherwise,
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Chapter 5. Shape optimization of the probability to exceed a threshold

Thus, the shape derivative of ® (-) in {2 becomes

De () = Y ((Mglﬂswmg—l/?):Bw'

1<i<j<N

71 ‘ )
8 /SN1 det f (\/%MQ ’s — Mg bQ) 5i5; ds)

N
! kZ::l (<m79 - EQ’QMQ_le) Ok /le det f (\/%MQ - MQ_le) Sk ds) :

(5.22)
For problems where g, = 0, equation equation ([5.22)) simplifies to
1 .
D (Q)(O) =—= > (Mg—l/QDMQ(o)MQ—l/Q) . B
2 <ig<n
isIs (5.23)

Mo /2 e
X /SN1 det f (\/m Q s) 5i5; ds)

The expression of the shape derivative of ® (£2) requires the computation of all the
entries of Eq ¢ and rgg (which are functions of DMq (), Dbq(0), and Dcq(0)), as well as
N(N + 3)/2 integrals on Sy_1. The evaluation of said integrals can be done by applying
suitable quadrature formulas on Sy_1, which of course might be quite expensive if the number
N of random variables is large.

5.3.2 Remarks about the uniform distribution

Let us consider the random variables Xi,..., Xy to be independent and uniformly distributed
in the interval [—3, 3]. For the sake of simplicity we suppose also that g, = 0. If we denote
Ty =[5, 3] % ... x [~3, 3], the vector X follows the uniform distribution X ~ ¢(Tx). In such

case, for a given adm1881ble domain €2 € Saam, the probability of the quantity Q (ugg(-),2) to
be below the threshold 7 has a simple expression:

Vol (81\/1977— N TN)

® () =P[Q(ung @) <7]=—1 7 (Tw) (5.24)
Equation has an explicit expression if the ellipsoid &y, - is included into the box Ty
Indeed, the volume of an N-dimensional ellipsoid £ with semiaxes aq,...,ay is:
/2 N
Vol (&) = m g a;. (5.25)

Given the expression (5.9) for the length of the semiaxes of EMg,r, in the cases where Env, » C
Ty, the quantity @ (2) can be expressed as:

Vol (Emo,r NTn) Vol (Emg,r)  wV/27N/2

B T/ B TG 7o R ey

(det Mg) /2. (5.26)
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5.3. Sensitivity of the exceeding probability

We suppose that all the components of the NV x N matrix Mg, are differentiable with respect
to the domain 2, and we denote DMq(0) the N x N matrix such that:

[DMq(0)];; = D{uqi, Q uaj)y (o) (6) for all 4,5 € {1,...,N}.
By applying the expression (5.22)), the shape derivative D® (€2)(6) can be written as:
1 [ 7N/2 N/2

= — %(I) (Q) tr (Mgfl DMQ(O)) .

D® (Q)(0) = — ) (det M) ™"/* tr (Mo ™! DM(6))

(5.27)

Unfortunately, the relativeAly simple expression (5.27) applies only when the hypothesis
Emg,r C Ty is verified. Let By be the N-dimensional ball of radius 0.5 centered in 0, and
vy the ratio between the volumes of the ball By and the box T :

T Vol(Tx) T (5 +1)

2

= B ey

Since By is the biggest ellipsoid included in Ty, a necessary, but not sufficient, condition for
the hypothesis Emg,,» C Ty is that

_ Vol(émg.r NTw) _ Vol (Emg.r) _ VO (Bx)

()= Vol (Ty) = Vol(Ty) = Vol(Ty) N

Therefore, in order to be able to use the expression (5.27)), the threshold p introduced in prob-
lem (5.3) must satisfy the following inequality:

P> PlQ(uagl). Q) > 7] =1-®(Q) > 1-ny. (5.28)

The solution of problem (/5.3) is significant when the threshold p is sufficiently small (around
1071, or 1072, or less). Unfortunately, such problems are not compatible with the inequality
(5.28]), especially when the number N of random components is bigger than 4, as shown in

table B.11

N Vol (IE%N) :%:Iﬁv 1-uvN
2 | 3.1416 x (0.5)2 =0.7853 0.2146
3| 4.1888 x (0.5) =0.5236 0.4764
4| 4.9348 x (0.5)*  =0.3084 0.6916
5| 5.2638 x (0.5)> =0.1645 0.8355
6 | 5.1677 x (0.5)5 =0.0807 0.9193
8 | 4.0587 x (0.5)® =0.0159 0.9841

10 | 2.5502 x (0.5)!° = 0.0025 0.9975

Table 5.1: Ratio of the volume of the unit sphere I@N and the volume of the box Ty, and
maximum value of p for equation (5.26) and equation (5.27) to be valid, as function of the
number N of random variables.
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Chapter 5. Shape optimization of the probability to exceed a threshold

5.3.3 Shape derivative for centered Gaussian perturbations

In this section we aim to apply the formula proposed in to the case of centered Gaussian
mechanical loads. In particular, in order to avoid the numerical computation of the integrals
on the N-ball and N-sphere that are necessary to compute ® (2) and its shape derivative, we
apply the quadrature formulas presented in appendix [C|

Let X ~ A (0,1) be a standard Gaussian multivariate random variable with N components,

and g € L2 ((Q,IP’;H_l/2 (FN)d> be a centered random load such that, for almost any event
we O,
gw) =g X1(w) +... + By Xn(w). (5.29)

The random variable X has the following probability density function

1 _ 1Ty
fx(x) = amet T (5.30)
By equation (5.11)) and by the change of variable x = %Mgl/ 2y, we express the functional
P(Q)=PX ey, as

N/2 T
2@ = [ s o [ e (<pMaly)ax ()

vo,T

The expression ([5.31)) can be formulated using the results of appendix
Proposition 5.3. Under the hypotheses of sectz’on the quantity ® (Q) can be computed as

(/\N)N/2 o0

1 N T
= —y|—=—4+k — | B 5.32
Q(W)N/Q«/idetMka_:k!’y<2 * ’2)\N> b (5:32)

0

@ ()

where Ay is the smallest eigenvalue of Mq, 7(+,) denotes the lower incomplete gamma function,
and the terms { By}, are found by the following recursive relation

Br= Yl (1 - %) Al

1 _ 27 V/2
Ay = N(N+2]13)/2r(g)’ (5.33)
T 2 2k A 7 ;

The recursive relation (5.33)) is initialized by:

By = [Sn-1] = Z54,

r(z 5.34
Ap = Baal o 2n7e 1<i<N (5:54)
0= TN TN for1 <i<N.

Proof. We consider the expression ((5.31]) for ® (2), and we focus on the integral term. Thanks
to the spherical symmetry of By, we can diagonalize M and replace the integral with

/ exp (—;yMQ_ly) dx :/ exp (—ny)\g/zy) dx, (5.35)
BN ]BN
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5.3. Sensitivity of the exceeding probability

where Dg, = diag {ﬁ, e ﬁ}, and A1, ..., Ay are the eigenvalues of Mg, in decreasing order.

The thesis follows from the expansion of the integral (5.35|) into a series using proposition
where the terms {A%}~ , and {By};o, denote, for all i € {1,...,N} and k >0,

) — k — k
L= / (sT(JI — DQ)S) s2ds and By = / (ST(]I - DQ)S) ds.
SN—_1 Sy-1

(5.36)
0

A similar expression can be obtained for the shape derivative, as shown by the following
result.

Proposition 5.4. Let Q € Saqm be a Lipschitz continuous domain in R®. For alli € {1,...,N}
we define the load g; € H™1/2(I'y)? as

g =gv'h + .. ey,

82 is the eigenvector of Mq corresponding to the eigenvalue \;, and vi’Qj its j-th com-
ponent. Moreover, we denote uq; the displacement obtained by solving the state equation (5.2))
for the load g;. Under the same hypotheses and notations of proposition[5.3, the shape derivative

of ® () evaluated in Q € Syam can be expressed as

where v

D (Q)(6) = E)"? & e_ﬁDN ag, oS Ak (7 5.37
(DO =~ i &= | D60 QWi >Mk;<m) . (637)

Proof. We start by considering the expression ([5.19)) for the case where X is a centered Gaussian
random vector.

r\N/2
D (Q)(6) :—2\(/%;*1\49 - ¢35 Mas (Do (0)(9)Mo /%) - (Mg ~"/2s) ds.

We diagonalize the matrix Mg as Mg = UaDqUqT and apply the change of variables s — s =
UqTs. Since Ug is an orthogonal matrix, the domain of integration after the change of variable

stays the same. As in proposition H we denote Dg = 5Dgq = diag {ﬁ, cee ﬁ}

\N/2
D® (Q)(e) _ (ﬂ) / 6_%STUQDQUQTS
2y/det Mq Jsy_,

x (DMo(0)UaDo~?Uq"s) - (UaDo~/?Uq"s) ds (5.38)
L)N/2

e L (U800 0)05) D) (D) s

We decompose the symmetric matrix (UQTDMQ(H)UQ) on the basis of symmetric matrices
{Bi’j}iogigjgN introduced in (5.21])

Uo"DMo(0)Uo = Y. ((Ua"DMo(6)Us) : BY/) B,
1<i<j<N
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Chapter 5. Shape optimization of the probability to exceed a threshold

Therefore, equation ((5.38) becomes

(E)N/Q T ij e Dgsgzg] o~
D (Q)(6) = N 3 N((UQ DMq(6)Uq) : BY )/S Wd . (5.39)
<i<j< N-1 7

In order to conclude the proof we remark three properties of the different terms in
First, we consider the quadratic nature of the mapping ug — (ug, @ UQ>H1(Q) the hnearlty of

g > ug, and the definition of the matrix M. For any b, ¢ € RY we denote gb, gP € H1/2 (FN)
the loads

gb =g +...+8x5bN, and gE =gic1+...+8ncN,

and uAQJb, ug® € H! (Q)d the displacements obtained by solving the state equation (5.2]) for é'vf’
and g€ respectively. Then

b"DMg(8)c = D(uoP, Quo®) | (6).

H(Q)
Therefore

[Ua"DMa(8)Us| = D(;, QU )51 o (6).

A second results concerns the terms inside the integral in equation (5.39)). Indeed, thanks to
lemma all terms where ¢ # j are equal to zero, and only the N terms of the sum for which
1 = j remain

( )N/2 al T3 57
D (2)(6) = ~5 oz 2 Pl Q Wi o) (0 [ (5.40)

Finally, proposition allows to express the integrals in (5.40) in the form of an infinite series

as
/ e” Dﬂ“d~ ZA’, (5.41)
Sy-1

for any i € {1,...,N}. The terms {A4}},;”, are introduced in and follow the recursive
relation ([5.33)) - - In conclusion, we obtain that the shape derivative of ® () evaluated

0 € Wh (Q)d can be expressed as

(& )N/Q N egAN - XLVAL TP
D2 (2)(0) = ~ 5 Ao Z( N uQ”"Q““”'>H”Q>(0);§‘“<M) )

5.4 The generalized noncentral chi-squared distribution

5.4.1 Series expansion of the cumulative distribution function

Let X ~ N (u,X) be a Gaussian random vector with N components, mean g and covariance
matrix 3, and let D = diag {\1,...,An} be a positive definite diagonal matrix. Let T" be the
random variable defined as follows:

T=XTDX=MX2+.. +IvX3. (5.42)
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5.4. The generalized noncentral chi-squared distribution

Without loss of generality, we suppose that the covariance matrix of the Gaussian random
vector X is the identity matrix: X ~ A (u,I). In such case, each random variable X? follows
a noncentral chi-squared distribution with one degree of freedom and non-centrality parameter
p2. The random variable T is said to follow a generalized non-central chi-squared distribution

T~ X2 (L ® s ), (5.43)

where 1 = [1,...,1] is the vector of the degrees of freedom, pu® pu = [1i3, ..., u%] is the vector of
noncentrality parameters (the symbol "®" represent the elementwise product), and A = diag {D}
is the vector of the weights of the random variables X1, ..., Xy.

The characterization of the cumulative distribution function Fr of the random variable T has
been studied analytically in [208] 214]. The results of these articles have led to the development
of several algorithms for the numerical computation of the quantiles of 7. Sequential methods
that provide an estimate for the truncation error include the algorithms developed by Imhof
[142], Davies [95], 06], and Farebrother [III], who refined the result obtained by Sheil and
O’Muircheartaigh in [231]. If the number N of random variables is large, faster but less accurate
approximations should be considered. Among such techniques we mention Kuonen’s method
[159], which is based on a saddlepoint approximation of the distribution of 7', the approach
based on the leading eigenvalues developed by Lumley et al. in [I71], and the several approaches
based on the computation of the stochastic moments of the random variable T like the methods
deveolped by Liu-Tang—Zhang [166], Satterthwaite—Welch [219], Hall-Buckley—Eagleson [132,
55], and Lindsay—Pilla—Basak [164]. Further information on the comparison between the different
methods can be found in [105] 52, [66].

In this section, we present the results of Ruben [214], where, for any threshold 7 > 0,
the quantity Fp(7) is expressed in terms of a series of cumulative distribution functions of
centered chi-squared random variables [214, Theorem 1]. The coefficients of the decomposition
are defined by a recurrence relation. Moreover, an upper bound on the truncation error of the
series is provided.

Theorem 5.5 (Decomposition of Fr (7) by chi-squared random variables). Let T be a real-
valued random wvariable defined as in (5.42)). Then, for any choice of B > 0, the quantity
Fr (1) =P[T < 71| can be expressed as

Fr(r) = OOWFQ ). (5.44)
T 1;) kL' x2(2k+N) (5)

The weights {yk}req are computed by using the recurrence relation
Lilpl|? aN/2 ~1/2 1=
vo = e 2IHI7 gN/2 get (D) and v, = % ng,gfyg fork>1, (5.45)
=0

where the coefficients {gy}rey are defined in accordance with
N k—1
g = (1 - f) (1 + (k2 — 1)5) : (5.46)
i=1 g g

In particular, if 0 < B < mineqy . Ny {A1,-- -, AN}, the series (5.44) is a mizture representation,
meaning that all coefficients vy, are non-negative and Y e vk = 1.
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Chapter 5. Shape optimization of the probability to exceed a threshold

This result is stated and proven in [214, Theorem 1], while the condition of the mixture
representation is stated in [214] Section 5]. Note that [214] provides also an explicit expression
for the coefficients {74 }r-, which can be used to prove the uniform convergence of the series
for any choice of 8 > 0 and for any finite value of the threshold 0 < 7 < co. Especially,
analogous results apply also to the probability density function of T'.

Corollary 5.6. If 0 < 8 < min;e(y, . ny {A1,---, AN}, for any 7 > 0, the following expression
for the probability density function of T holds:

T) = i%fﬁ(zmzv) (;) :

k=0

If the mixture representation holds (that is if 0 < S < min{Ay,...,Ax}), it is possible to
establish the following upper bound on the truncation error of the series (5.44)).

Proposition 5.7. If 0 < f <min{\1,...,A\n} and the hypotheses of theorem hold, then

Fr(r Z%F 2(2k+N) <;> < <1 - i%) Fy2on+2+n) (;) (5.47)

k=0 k=0

for all 0 < 7 < 00 and any positive integer n.

Proof. One readily verifies that F\z2(y,) (1) < Fy2(, (1) for any pair of integers m > n and any
7 > 0 fixed. Therefore, the sequence {F 2(2k+ N+2) %)} is decreasing whenever 7 /[ is fixed.

Thus, we conclude

Pr(r Z%F 2(2k+N) (;)’ =

s T
> WF 2ok (5) ‘

k=0 k=n+1
n T
< Fl22n4N42) < > Z Ve = (1 - Z%) F\20n124N) <ﬁ>
k=nt1 k=0

5.4.2 Differentiating the probability to exceed a threshold

Let 7 be a positive constant, and let us consider the following mappings:
e M:[0,6] — RV¥*N associating to any t € [0,d] a positive definite symmetric matrix;
e b:[0,6] = RVN;
e c:[0,0] = R.

We assume that these three functions are all C', and we denote by ¥, the quadratic form defined
on RV given by
Ty x = X M(H)x + 2Tb(H)x + c(t). (5.48)

We suppose that ¥;(x) > 0 and that 7 > ¢(t) —bT (1 )M~ L(¢)b(t) = ¥; (-M~1(¢)b(¢)) holds for
all t € [0,6] and x € RY.
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5.4. The generalized noncentral chi-squared distribution

Let X ~ A (h,I) be a Gaussian random vector, where h € RY is constant and I is the
N x N identity matrix. We are interested in differentiating the cumulative distribution function
of the random variable ¥;(X) with respect to the parameter ¢. In order to do so, we prove the
following lemma about the derivative of the cumulative distribution of a generalized x? random
variable.

Lemma 5.8. Let us consider two C* vector-valued functions p, X : [0,0] — RN such that, for
all t € [0,6], all components of X(t) are strictly larger than a positive constant B independent
fromt. For allt € [0,6], let T(t) be a random variable with the following generalized chi-squared
distribution:

T(t) ~ x> (L; u(t) © pu(t); A1), (5.49)
Due to theorem its cumulative distribution function evaluated in T can be expressed as
e T
Fray (1) =Y () F2@rrn) (5) (5.50)
k=0

Then, the coefficients vyi(t) of the respective cumulative distribution function (5.44) evaluated in
T are differentiable with respect to t for all t € [0,0] and all k € N, and their derivative is

Te(t) = N(t) - p* + p'(t) - o".
T

Herein, the terms p* = [pf, ..., p&]T and q* = [¢}, ..., %], and DI are defined as follows for

any j €{1,...,N} and k > 0:

o B =gk and pf = g ST (V) v+ plgi—i) for k> 1;
o ) =0and ¢¥ = 5 XI5 (K5 v + dgr—e) for k> 1;

v = () and vf = 5 (1~ ) =1+ L2 = 1) + (1= L) = kp?)] for

k-1
. /ﬂ?:?kuj)\%(l—%) for k> 1.

Proof. According to theorem the coefficients 7y, are defined as in ([5.45]), where the coefficients
gi. are given by:

Yoo\ 8
_ Y B A
g=> (1 — X) (1 + (kp;(t) 1)Aj(t)> . (5.51)

=1 i
Differentiating equation ({5.51]), we obtain

/ al hi/B / 2 ﬁ ! a 1,7 1y/
91(t) = Z (2 IV Mj(t) - (hj - 1)>\2/\j<t)> = Z (”juj(t) +vj )‘j(t)>
j:l J
and for k£ > 1
al 8\ 3 3
/ _ 2 !
gk(t)—jz::l{< —)\j> ((k‘—l))\? <1+(kﬂj_1))\j>>)‘j(t)
+<

1
i N
_ f) <2k:“)fjﬁuﬁ-(t) - ((k:u? - 1))\]@)2) A;(t)> } = ]Zl (b (t) + vEN; (1)) -

J

The assertion follows by differentiating the definitions of v, found in (5.45), and using the
expression above for the derivatives of gy. O
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Proposition 5.9. Let U, : RV — R be defined as in fort €10,9], let X ~ N (h,I) be a
Gaussian vector, and let T be a positive constant. We assume that 7 > c(t) — b (t)M~1(¢)b(t)
forallt € [0,6], and that all eigenvalues of M(t) A1(t), ..., An(t) are pairwise distinct and larger
than a strictly positive constant 8 > 0. We introduce the following notation:

Y(t) € L2(O,P)Y is the random variable defined as Y(t) = X + M~L(t)b(t), so that its
law is Y(t) ~ N (h+M~1(t)b(¢),1);

o for allt €10,8], we denote T(t) the random variable T(t) = Y ()M(t)Y(t);

o 7:[0,0] = R mapping t — 7 —c(t) +b(t)TM~(t) + b(t);

o M(t) is diagonalized as M(t) = Q(t)D(t)QT(t), where Q(t) V,...,|vN] is an orthog-
onal matriz, and D(t) = diag {\(t)} = diag {\1(t),..., An(t)};

o p:[0,0] = RY such that u(t) = QT (t)h + QT(t)M_l(t)b(t).

Then, for any t € [0,0], Y(t) is a normalized Gaussian random variable centered in pu(t), and
T(t) has the following chi-squared distribution:

T(t) ~ x2 (1; u(t) © p(t); A). (5.52)

Moreover, for allt € [0, 9], the following identity between the values of the cumulative distribution
functions of V(X) and T'(t) holds:

Fy,x) (1) = Frq) (7). (5.53)

Finally, the mapping t — Fy,(x) (1) is differentiable and its derivative can be written as
d T(t
T —Fy,x) (7 (ZP Fr2 k1) < (5))> - N(t)

+ <i a"Fyz(ok4 ) <T(;)>> p( 3 <Z Vefx2 (2k+N) (Tg)>> 7(t). (5.54)

k=0
Here, for all n € N, f 2, is the density of a chi-squared random variable with n degrees of

freedom. The components of p* and qF are the coefficients appearing in the decomposition of
Frqy (7(t)) expressed as in lemma while the derivatives of X, w, and T are:

N(1) = diag { QT (M ()Q(1) } (5.55)

1Lt = %j ( : ! - (VM) (v (b M—l(t)b(t)))) (5.56)
] + vi' (M*l(t)b’(t) + M*l(t)M'(t)Mfl(t)b(t)) forallic{1,... N},

7(t) = —%c( £) —bT (ML (H)M ()M~ (£)b(t) + 2bT ()M (t)b'(t). (5.57)

Proof. The identity follows from
Fy,x) (1) =P[¥(X) < 7] =P [XTM(t)X +2b(t)TX + ¢(t) < r}
_p [(X + M*l(t)b(t))T M(t) (X + M7 (t)b(t)) < 7 —c(t) + b(t) "M~ (¢) + b(t)

=P[T() <7(t)] = Fre) (7(1)).
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5.4. The generalized noncentral chi-squared distribution

We prove next the differentiability of A, u, and 7 and equations (5.55)), (5.56)), and (5.57)).
Equation (5.55|) is deduced directly from [I73, Equation (4)]. Equation (5.56)) can be proven

by using [I173, Equation (5)] on the derivative of the eigenvector of a symmetric matrix with
distinct eigenvalues

1

V() = (W — M) M/ (Vi) = N

J#i

(VjTM/(t)VZ) v,

where the symbol "+" denotes the Moore-Penrose inverse. Indeed, using the properties of the
Moore-Penrose inverse, we arrive at

(AWL=M)" = (Q\I-D)Q")" = Q) diag {D'()} Q)"

Herein, for all i,j € {1,..., N}, Di(t) = [di(t),...,d(t)]T with d = 0 and d;- = m if
i # j. Since p;(t) = ViTM_l(t)b(t) for all 1 <1i < N, we deduce

i) = v () "M (6)b(8) + V() M (M (M (6)b()M T (6)b' (1),

which is equivalent to (5.56)). Next, equation can be computed directly by applying the
chain rule on the definition of 7.

Finally, in order to prove the expression of the derivative of Fy,(r)(7), we consider
the identity and the result of theorem to write

Fu0 () = Frey () = 3w (7).
k=0

By differentiating both sides with respect to ¢, we obtain

d 0

aF\Pt(X) (1) = 871FT(t1) (7(1)) (5.58)

0 _
+ %FT(t) (T(t2))

t1=t to=t

We treat the two terms on the right-hand side of equation (5.58|) separately.
In order to evaluate the first term, we aim to prove the uniform convergence of the se-

ries 322, p* - N (t) Fy2 (214 vy (%) and Y2, q" - K () Fy2 (ap 4 ) (%) We start proving by
induction the inequalities

’pﬂ < MYk and ‘qﬂ <y forall j € {1,...,N}, k>0, (5.59)

where 7 and (i are defined for £ > 0 as

= e { ] EEED y f O0EES)
=S8N L 2N 2 1<i<N | )2 (1_ f) ’

_ k(k+1) 203 |hi|
G BN 2 9) -8y

Ad

i

(5.60)

For k = 0, the inequalities in (5.59|) are satisfied. Let us therefore suppose that they are
valid for the step k — 1 and prove that they hold for the step k. Thanks to the fact that

155



Chapter 5. Shape optimization of the probability to exceed a threshold

0 < B <mingeqr, Ny {A1,.--, An}, we have for all k > 1 that

k—1 k=1
5 (- 8) (oms-ng) 5 5)

Sﬁzgk(k1+ kh2 — 1) )Ségkk—u\l—khﬂ
J ( J

-%) (1= 5+ Le) (1-%)

1+h2+2/k h2 + 3
<kgpf max j7+/ < kg, max M
ie{l,...N} )\]2, ( _ ﬁ) ie{l,...N} /\? ( _ ﬁ)

Aj

and

k=1 (14 (kh2—1 ﬁ)
] < 2l <1_ 5) (105 -98) orgpts . { 2% g 5 hy }
VTR ) S0 S 6
In view of such upper bounds and since the sequences {n}r-, and {(;},— defined in (5.60))

are strictly increasing, we arrive at

1 k—1
pk| = % ;) (v~ + phgr—)

BhT+3) | 1
< Ny E_ f E
- z'e{r?,%.},{zv} { 22 (1 ,\<> 2%k Z(:)( )gk—eVe + Z NeYegk—e
J

1 k—1
S%;\ ‘w+ ‘pj‘gke

B(h3 +3)

1
< ie{qu?}f]v} {M} % ng e+ o M1 Z’Y@gk ¢
J

B(h% +3)
= |k m g 7 _ =
( ze{l,a},{N}{)\Q( - ,3.> + k-1 | Yk = Nk Vi

k—1

ik z:: ( e +qjgk e)

and

SiZ‘ K ’ z+f2‘qj‘gk ¢

26 |h; 15 =
< max {/\f'j')} Zk 0)gk— erﬁZCenge
J

/|

==

ie{1,...,N} 1— )\ﬁ
j

IA

=
28 |hy| ke 1 =

omax ¢ —— b = Y ge Yo+ oGt Y VeGh—t
{ y(-£) )2 2k
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5.4. The generalized noncentral chi-squared distribution

In order to prove the uniform convergence of the series of (5.59)), we use two results from
[214]. The first one is presented as [214, Equation (4.14)] and states that

D (Y k),
Tk < Vog?g))z! (5.61)

for any k > 0, where v is a positive constant depending on 3, A(t), and p(t). The second result
is [214, Lemma 4] and states that the series

oo P(%—i—k‘)ljk

kZ:ZO F(N)MFXQ(QHN) () (5.62)

2

is uniformly convergent (and therefore absolutely convergent) for any positive and finite 7 and
Z on the interval [—oo,Z]. Thus, we can introduce the quantities p1, p2, o1 and o9 with the
property

e < prot and (g < pooh for all k > 0. (5.63)

A suitable choice is given by

1
o= maXISiSN{Q/\i}7 p2 = 1
. {ﬁ(h?+3)} . { 26 hi) } (5.64)
o1 = X1<i<N N 5 7. a2y (> 02 = XIKi<N Y “o 7. 2N (-
M(1-4) M(1-4)

Using the bounds from (5.59)) and the two results from [214] stated above, we remark that
the first and second series in ([5.54]) are absolutely convergent, since

> ‘pﬂ Fy2(nyar) (;) < e Fye(v4m) (;)
k=0 k=0

— F(%Jrk) (o10)" T
< éﬂﬂo r (%> Kl Eye(Nok) (5> < o0,

and

> ‘Qﬂ Fy2(niak) (;) < GmFyevion <;>
k=0 k=0

s r (% + k) (o9v)k T
< I;)Pﬂo T (%> %l F\2(n o) (5) < 0.

. T(t T(t
Thus, the series Y 52 pk-)\’(t)sz(zHN) (%) and Y72 qk-u’(t)FX2(2k+N) (%) are absolutely
convergent and, hence, uniformly convergent by the Weierstrass criterion (see e.g. [215, Theorem
7.10]). Consequently, it is possible to swap the summation and the derivative for the first term
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of (5.58)) (see [215, Theorem 7.17]) and we obtain

i (P “N(t) Fy2(2k4n) <(ﬁt)> +Z (q - (1) Fy2 (214 ) <(Bt))>

N

= i (Pk N () Fy2aren) <F(Bt)) +a" 1 ()P e <%(Bt))> (5.65)

k=0
oo , F(t o el T(t 0 ~
:];)yk(t)sz(QHN) (?) = o kz:%')/k(t)FxQ(%-i-N) (T(ﬁ)> - 871FT(t1) (7(1)) et

We pass to the second term of ([5.58). Since the generalized chi-squared distribution of 7'(¢)
is continuous in R, for any 7* > 0 the quantity It (7*) exists and is finite for any 7* > 0.

Moreover, thanks to theorem and corollary fre (%) = 22520 % () fr22k+3) ( ) The
set T ={7(t) : t €0,0]} is compact, so the series converges point wise, and all of its terms are
positive, the series 37 o vk (t) fy220+) (%) is uniformly convergent on ¥ [215, Theorem 7.13].
Hence, thanks to the absolute continuity of 7/(¢) for all ¢ € [0, d], we have

Ot (5F) = 3 2 (R (12))

k=0
0
= 87152 <Z’Yk F X2(2k+N) < %2)>>

In conclusion, the combination of the equations ([5.58)), (5.65)), and (5.66|) proves the expres-
sion ((5.54) for the derivative of the cumulative distribution function of ¥;(X). O

to=t

(5.66)

et Otz

5.4.3 Shape optimization under Gaussian perturbations

Let us consider once again the shape optimization problem . Using the notations of Sec-
tion [5.2] we suppose that the random vector X follows a Gaussian distribution with mean
h = [hy,...,hy]T and, without loss of generality, covariance matrix equal to the identity.

If the vector h or the deterministic load gg are large enough, the uncertain component can be
seen as a small random perturbation around a deterministic load g = go+g,h1+...+Exhn, and
the shape derivative can be computed as in [11} Section 4.2.3]. Otherwise, if the mechanical loads
are centered on 0 or the uncertainties are wide enough not to be treated as small perturbations,
a different method should be considered. If the probability density fx of the uncertainties is
known, the technique detailed in Section [5.3.1can be applied. However, if the number of random
variables involved in the modelization of the uncertainties is significant, the computation of the
integrals on the N-ball and the N-sphere can be challenging.

Since we suppose that X follows a Gaussian distribution, by considering the diagonalization
of the matrix Mg = UgDgq U, we can use corollary and proposition to express
O () = P[¥q(X) < 7] as the cumulative distribution function of a generalized chi-squared
random variable, and compute the shape derivative of @ (-) in Q € Sadm.

Proposition 5.10. Let X ~ N (u, 1) be a Gaussian random vector in RN, Q € Saqm a Lipschitz
continuous domain in R? or R3, and 7 € RT a strictly positive threshold. The quantities Mq €
RNXN "bo € RN, and cq € R are functions of the domain Q € Saam, and are defined as in
Section and we suppose that Tq, defined as in , 1s strictly positive for all Q0 € Spqm-
In addition, we suppose that the mappings Q@ — [Mq); j, Q@ — [bqli, and Q — cq admit a shape
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derivative at Q0 for all i,5 € {1,...,N} and that all eigenvalues of Mg are distinct, strictly

positive, and larger than a positive constant 3 independent from €. N
Then, ® (Q) can be written as the cumulative distribution function as ® (Q2) = Fr, (%ﬂ),
where Tq is a random variable such that

To ~ x2 (1; pg © poi Aq)

with Aq being the vector of the eigenvalues of Mq and pqo = (h + MQ_le>. Moreover, ® (-)
is shape-differentiable at 2, and its derivative can be expressed as

Do (2)(0) = (I;) P Fy2(k4 ) (j‘?)) -DAq(0)

(S gt ﬁl)-D (0)+1<OO foo ﬁ’)m(o).
(kz%q X(2k+N)(B> 249} 3 Z’ka(%wv)(ﬂ) Q

k=0

(5.67)

Once again, the components of p¥ and q¥ are the coefficients appearing in the decomposition
of Fr,, (Ta) expressed as in lemma while D7 (0) is as in equation , and the shape
derivatives of Aq, pq are

Do (6) = diag {Ua"DMq (8)Uq } ;

oun0)= 37 (55 (08t (7 o )

+v'" (Mo ™' Dbg(6) + Mo~ 'DMo(6)Mo 'bo)  for alli € {1,...,N}.

Proof. The proof of the identity ® () = Fr, (%Q) is analogous to the proof of equation (|5.53|) in
proposition In order to compute the shape derivative of ® (-) at 2, we recall that the identity
holds for any differentiable shape functional S,qm — R any Lipschitz continuous domain,
and any mapping £ : [0,6] — Wh (Rd;Rd). Thus, taking as deformation field &£(t) = t0, we
have

D& ()(6) = %@ (I +t0)Q)

d

= EFT(]H-W)SZ ()

t=0 t=0

We denote T'(t) = T(110)0, A(t) = Aprwyes B(E) = ey, and T(t) = Trrg)o- Equa-
tion (5.67) and the expressions of the shape derivatives of Aq, pq and 7o are found using

proposition and the identity (/5.18|). O

5.5 Presentation of the algorithm

5.5.1 Generalities on the algorithm

The theoretical results stated in the previous section have been applied to the shape optimiza-
tion of a cantilever (in section and a bridge-like structure (in section [5.6.2)). In both
examples, we considered the structure to be composed by an isotropic linear elastic material,
subject to random mechanical loads. For the two structures, we aimed to minimize their mass
under constraints on the probability of the compliance to exceed a threshold. We recall from
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section that the compliance of an elastic structure € is defined as the work of the external
mechanical load g and can be expressed as a quadratic function of the displacement ug as

C(Quq) = ; g -uqds = /Qa' (uq) : € (uq) dx. (5.68)

The problems considered in the following can be resumed by the following structure:

Find the admissible shape Q € S,qm
minimizing Vol ()
under the constraint
d(Q)=P[C(Quq(w)) >T] <p,
where the state ug satisfies the state equation (5.2) for almost all w € O (5.69)
with g € 1.2 (0, P; 1.2 (FN)) such that
gw)=gy+gX1(w)+... +gxXn(w) for almost all w € O, and
X = (X1,...,Xn)T ~ N (h,1).

All simulations have been performed under the python-based sotuto platform proposed by
Dapogny and Feppon in [91] and presented in section The computation of the elastic dis-
placements and the adjoint states has been performed using the finite-element solver FreeFem++
[136]. We represented the domains by the means of conforming meshes obtained using the
implicit-domain remeshing tool of mmg [89], coupled to the level-set representation of the shapes
[12, 247]. The advection of the level-set function is handled by the advect library [56], while the
computation of the signed distance function is performed by mshdist [92]. The simulations have
been ran on a Virtualbox virtual machine Linux with 1GB of dedicated memory, installed on a
Dell PC equipped with a 2.80 GHz Intel i7 processor.

For all structures we considered two cases. In the first one we suppose X to be a cen-
tered Gaussian random variable, and we adopt the method described in section In the
second case we consider X to be a non-centered Gaussian vector, and we apply the results of
section B.4.3

In the rest of this section we present the details of the numerical implementation of the to
methods. Let D € R? be a computational domain such that any admissible shape € is included
into D. For both situations, at each step n of the optimization algorithm we have a mesh Tp o
covering D where the domain € is represented explicitly. At first, we solve numerically the state
equation for the N different mechanical loads g5, . .., gy, obtaining the displacement fields
uqi,...,un n. Next, we compute all entries of the matrix Mg as

Mgqij = /QO' (ug) : € (ug,;) dx.

The matrix Mg is symmetric and positive definite and is diagonalized as M = UgnDgq Qg, where
Ug is the orthogonal matrix of the eigenvectors, and D = diag {1, ..., Ax} the diagonal matrix
of the eigenvalues. If the term g, is not 0, the quantities by € RY and cq € R are computed as

(bo]s — /Q o (uqy) : € (ugo) dx and o = /Q o (uqo) : € (uqo) dx.

The computation of ® (2) and its shape derivative D® (Q)(0) is done differently in the two
methods, as detailed in the rest of this section.
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5.5.2 Centered Gaussian perturbations

In the case where g, = 0 and X ~ AN (0,1) is a centered Gaussian vector, the computation of
® () relies on proposition Let us consider a tolerance € > 0 for the numerical computation
of ® (). The first step is the computation of the coefficients A% and By for i € {1,...,N}
according to the recursive relation - , up to a sufficiently large index k.. The
probability ® (£2) is approximated thanks to proposition as

(AN - (N )
®(Q) = (2 B
) 2(7T)N/2\/7det1\/[g];)k!7 3 TR oy ) B

According to proposition in order to compute ® () up to the tolerance ¢ it is necessary
for k. to satisfy the following condition

1 1 ke—1 T
v M 2e e

(N +2(ke + 1)) (ke + 1)! ~ 7ISna]

Let v!,...,vY be the N unitary eigenvectors of Mg. We compute the displacements
ug 1, .- .,m as ug; = Zé\[:l v'juq ; thanks to the linearity of the state equation. In or-
der to compute the shape derivative D® (£2)(0) it is necessary to compute N shape derivatives
DC (©,uq;)(6). Then, we can apply proposition and use the coefficients AJ, . .. ,A%E com-
puted earlier and get

(3 )N/2 N ke Ai /o7 k
D® (2)(6) = NFZ( AZ DCQW(“’%MM))-

5.5.3 Non-Centered Gaussian perturbations

If g, is not zero or if X is a Gaussian vector centered on h # 0, we use the results of
to compute ® (£2) up to an arbitrary precision, as well as its shape derivative. The first step
consists in computing the vectors Aq and pq as

Ao = [y An]T and o =h+ (Mg) 'bg.

Moreover, we denote (3,, and T the quantities

1
B = 5 min (A1, Ay) and 7o =7 — (co = ba™ (Ma) 'bo) .

Thanks to proposition [5.10| and theorem ®(Q) = Fr (Tﬂ), where T is a generalized non-
central chi-squared random variable such that

T ~ x2 (1; pg © pg; Aq)-

Let us consider a tolerance € > 0. In order to compute ® (€2) up to a precision £ we need to

compute the coefficients 7o, ...,v;. and g1, ..., g;. according to the following recursive relation
{ Y = 6_%”““”25711\[/2 (detDQ)_l/Q, d i\f: (1 5n)
_ an gk = -
T = o Gr-tVe = Ai
(5.70)
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The number k. of terms to be considered satisfies the following inequality

1—%’)% F o057 <7~—Q><€.
= X2 (2ke+N+2) B

Having computed the coefficients 7, ... s Vk.» the probability @ (©2) can be computed up to a
precisione as

ke ~
3(Q) =S F.s ), (5.71)
IR (3)

The computation of the shape derivative of ® (€2) requires the evaluation of the coefficients
ph,...,p" € RN and q',...,q" € RY, as well as the derivatives of 7, Aq, and U According
to equation and proposition such derivatives can be written in terms of the derivatives
of Mg, bg, and cq as

« D7q(0) = —Dcq(8) — M 'DMq(0)Mq 'bg + Mg 'Dbg(0);
» DXo(6) = diag {Ua"DMq(8)Uq };
;T ; T _
« Dpqi(0) =2 s (‘m,i‘im,i (" DMQ(‘))"J) (V] <h+ Mo 1b9>))

+vit (MQ”DbQ(é’) - Mg*lDMQ(e)MQ*bQ) for all i € {1,...,N}.

The vectors p!,..., p’_“i e RN and q',..., q’_ff € RV are computed component by component
according to lemma [5.8| as

o p) =gk and pf = 5 S50 (v v+ pig—g) for 1 <k < ke
e ¥ =0and ¢ = & 00 (K5 + ¢lgr—r) for 1 < k < ke

k—2
. vl= %(1 — pi2) and vk = %(1— ) IR = D)+ Lk = 1) + (1= 2)(1 = kpd)] for

o k=2 L (1) for 1 <k <k

After the computation of all these terms, the shape derivative of ® (€2) is computed according
to proposition [5.10] as

D& (2)(6) = OO’“FXQ TQ>.D)\9
@)(6) (lgop arim (7)) - DAa)

(S dtr 7-Q>.Dp, (0)+1<00’Yf2 %Q)D%(o)
(é X(2k+N)<B> Q 5 gkx(2k+N)<ﬁ) a

5.6 Numerical simulations

5.6.1 Optimization of a 3D cantilever

We consider €2 to be the cantilever structure represented as seen in fig. subject to an uncertain
mechanical load g perpendicular to the main axis of the cantilever. The load is applied on the
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region of the boundary denoted by 'y, while the structure is clamped on the four corner regions
marked as I'p. We suppose that the cantilever has a square cross section with side length /s,
and its length along the x axis is £,. Moreover, we consider the structure to made up of an
elastic material characterized by a Young’s modulus F and a Poisson’s ratio v. We consider the
uncertain load to have the structure

glw) = g, Xe(w)ex + gyXy(w)ey + @0 + ngz(w))em (5.72)

where X, X, and X, are real valued Gaussian random variables, {ez, ey, e.} is the canonical
basis of R3, and g, Jy» 9, and gy are deterministic forces. The geometric and material properties
of the structure are collected in table [5.2

Figure 5.1: Structure of the 3D cantilever. The region I'y where the random load is applied is
marked in red, while the clamping region I'p is highlighted in grey.

We considered two different cases. In case A, we consider a random load g4 orthogonal to
the main axis of the cantilever. In case B, the stochastic term in the direction y in the load
gp is replaced by a random traction-compression force parallel to the main axis x. For both
cases we optimized the structure against centered Gaussian perturbations using the method of
section and against Gaussian perturbations with a deterministic load gg using the method
of section [5.5.3] The results of the noncentered optimization problems are compared to a fully
deterministic problem where gp = ggpe, is the only load applied to I'y, and the constraint
® (2) < 7 of the optimization problem is replaced by

C(Quq) <.

The results of the optimization problems under centered loads are reported in table 5.3 and
the resulting optimal shapes are presented in fig. and fig. The trends of the objective
function and the constraint are shown in fig. and fig. [5.4D)] respectively.

By comparing the optimal shapes presented in fig. and fig. we remark that both
have a hollow structure, allowing to distribute the random mechanical load from I'y to the four
supports of I'p. The graphs of fig. show that the objective function decreases progressively
with the number of iterations (fig. , and the constraint on the probability of the compliance
to exceed a threshold 7 is satisfied (fig. . An examination of table confirms that the
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Geometry of the structure

cross section length Uy 1.0cm

longitudinal length ly 2.0cm

sidelength of I'p 0.3 cm

radius of I'y 0.1cm
Elastic coefficients

Young’s modulus E 200 MPa

Poisson’s ratio v 0.3
Mechanical loads

compression load [ 10 kPa

horizontal load Gy 10kPa

vertical load g, 10kPa
Mesh size parameters

minimal mesh size hmin 0.025 cm

maximal mesh size hmin 0.10cm
Thresholds for the inequality constraints

threshold on the compliance T 3.3 x 1072 MPa cm?

bound on the probability of failure D 1.0%

Table 5.2: Numerical data concerning the geometry and the mechanics of the cantilever structure

of fig.

Figure 5.2: Optimal shape for case A, where the applied load is ga(w) =
7, X (w)e,.
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5.6. Numerical simulations

Figure 5.3: Optimal shape for case B, where the applied load is gp(w) =
7. X:(w)e..

GoXe(w)e, +

Centered loads case A case B
Number of iterations 300 300
Execution time | 141 min26s | 158 min 56
Final volume Vol (Qopt) | 0.512cm?® | 0.355 cm?
P[C (2, uq(w)) > 7]
Excess probability under load g4 0.985 % 24.701 %
Excess probability under load gp 0.258 % 1.032 %

Table 5.3: Numerical results for the optimization of the volume of a cantilever subject to centered
Gaussian mechanical loads under constraint on the probability of the compliance to exceed a

threshold 7.

Objective Constraint
o o7
Caseg 2% -5 =1%
154 Case —— Case A
= — 1.5% Case B
g S
_ A
s 14 = 1% \sz:c«,«[\ﬁ»,\/,\,m.,e\/\u/f‘f\,/,\w“/\/,\(m@wwnw
= 1
> 05 & 0.5% 1
0 T T T T T T T O% 7\ T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Tterations

(a) Evolution of the objective function. (b) Evolution of the constraint.

Figure 5.4: Convergence of the objective and the constraints for the cantilever problems under

centered perturbations.
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approach detailed in section to differentiate ® () = P[C (2, uq(w)) > 7] with respect to
shape is correct. Indeed, the computation of ® (£2) for the two optimized structures under cases
A and B respectively yields results close to the upper bound p = 1.0% on the probability both
times (0.985% and 1.032%). By subjecting the two structures to the other loading condition we
remark that the structure optimized for case A complies with the constraint imposed by the
loadings of case B, but the reciprocate does not hold (the probability of failure being 0.258%
and 24.701% respectively).

A notable consideration emerging from table concerns the duration of the optimization.
The execution time of the simulations discussed in this section is comparable to the time to solve
a deterministic problem. Indeed, the largest fraction of the duration of each iteration comprises
the solution of the finite element problems and the mesh adaptation.

The optimal shape for the noncentered cases are presented in fig. (for case A) and fig.
(for case B), while the optimal shape for the deterministic problem is in fig. The results
for the problems with noncentered problems are compared in table with the outcome of the
deterministic problem. The decrease of the objective function in the three problems is shown in
fig. and the trend of the constraint for case A and case B is reported in fig.

Noncentered loads case A case B Deterministic case
Execution
Number of iterations 500 500 348
Execution time | 152min32s | 177min49s 114min 15s
Final volume Vol (Qopt) | 0.4605cm?® | 0.4103 cm? 0.0573 cm?
P[Q (ug(w),Q) > 7]
Excess probability under load g4 0.996 % 4.005 % 59.579 %
Excess probability under load gg 4.726 % 0.991 % 88.293 %

Table 5.4: Numerical results for the optimization of the volume of a cantilever subject to non-
centered uncertain mechanical loads under constraint on the probability of the compliance to
exceed a threshold 7.

By comparing fig. and fig. we observe that the optimal solutions for case A and
case B are quite similar to the ones optimized for centered loads, being convex hulls. The
main difference being the slight reinforcement on the z direction. In contrast, the solution of
the deterministic problem presented in fig. is radically different, showing a thin branched
structure. Such difference can be explained by the fact that, on average, the cantilever is subject
to a stronger mechanical load in case A and case B, therefore the corresponding optimal
structures ought to be more robust in order to satisfy the constraint on the probability for the
compliance to exceed the threshold 7.

Another notable difference between the deterministic and the uncertain cases concerns the
speed of convergence. Figure shows that the volume of the cantilever in the deterministic
problem converges much faster than the simulations of case A and case B. Moreover, in the
deterministic case, the optimization algorithm reaches a satisfying result and stops after 349
iterations, while the rate of convergence is much slower for case A and case B. Difficulties
in the convergence of the cantilever structure discussed here have also been observed in [112]
Section 6.2.1].

Finally, we remark that the shapes resulting from the solution of for case A and case B
comply with the constraint on the probability of failure, as shown in table The observance
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e B

.

Figure 5.5: Optimal shape for case A, where the applied load is ga(w) = g,Xy(w)e, +
(Go +7.X:(w)) e..

» 3

.

Figure 5.6: Optimal shape for case B, where the applied load is gp(w) = 7, X (w)e, +
(9o + 9. Xz (w)) e..
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Figure 5.7: Optimal shape for the deterministic case, where the mechanical load applied is

gD = gp€:-
Objective Constraint
1.2% A
—— Case A ]\q
— 1.5 Case B 1% - bt MMJ‘J\A,M&M LYy :u..._).ww‘;,ﬁmﬁ,v DMoeal s
mE —— Deterministic )
= A 0.8%
<)
B, 0.6%
By ---p=1%
0.4% - —— Case A
Case B
0 T T T T \ \ \ T \ \
0 100 200 300 400 500 0 100 200 300 400 500
Iterations

Iterations
(a) Evolution of the objective function. (b) Evolution of the constraint.

Figure 5.8: Convergence of the objective and the constraints for the cantilever problems under

noncentered perturbations.
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of the constraint, the decrease of the objective functional, and the radically different result with
respect to the deterministic case justify the use of the null space optimization algorithm for the
solution of problem , and the suitability of the approach of section for the expression
of ® (£2) and its shape derivative.

5.6.2 Optimization of a 3D bridge

As a second example, we consider the optimization of the bridge structure found in fig. The
structure is clamped on the lower surface on its four corners, marked in grey in the picture. The
pinned region, where Dirichlet boundary conditions on the displacement are applied, is denoted
I'p. The upper face of the bridge is divided into five sections FII\I, . ,F5N of equal size. On each
section I‘f\l, a random load g; € L? (0,P; L? (F&)) is applied. We suppose that the loads are
oriented vertically (that is along the z axis), independent from one another, and such that

gi(w) = —g;Xi(w)e.  onTy’ (5.73)

for all i € {1,...,5}, where g,e, is a deterministic vertical pressure and X; a Gaussian random
variable. The numerical parameters describing the geometry and the mechanical properties of
the bridge are reported in table [5.5]

I'p

R g

Figure 5.9: Structure of the bridge. The non-optimizable supports of the bridge are marked
in grey and their lower surface I'p is where Dirichlet are applied. The green block is non-
optimizable as well, and on its upper surface five random mechanical loads are applied on the
sections T'L, ... ,I‘15\I.

We suppose that X = [X1,..., X;5] is a Gaussian random vector with covariance matrix equal
to the identity. Once again, we consider two cases. In the first one the random variables X; are
centered in 0, and the techniques of section [5.5.2] are used to evaluate the constraint functional
and its derivative. In the second case we suppose that all random variables X; to have a mean
equal to —1.0, implying that an average compression load of 1.0 MPa is applied on each of the
five sections of the bridge. We consider the shape shown in fig. as initial condition. The
optimized shapes for the centered and noncentered cases are reported in fig. and fig.
respectively. The trends of the objective and the constraint are presented in fig. and
fig. and the numerical results for both problems are collected in table
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Geometry of the structure

Longitudinal length Ly 5.0cm

Cross section length ly 1.0cm

Height L, 1.0cm

Sidelength of I'p 0.2cm

Sidelength of each I'y 1.0cm
Mesh size parameters

Minimal mesh size hmin 0.10cm

Maximal mesh size hmax 0.05 cm
Elastic coefficients

Young’s modulus E 200 MPa

Poisson’s ratio v 0.3
Mechanical loads

Vertical load G; 1 MPa
Thresholds for the inequality constraints

Threshold on the compliance T 1 x 10~ MPa cm?

Bound on the probability of failure D 1.0%

Table 5.5: Numerical data concerning the geometry and the mechanics of the bridge of fig.

As for the cantilever in section these results illustrate that the constraint on the
probability of failure is upheld for the centered and for the noncentered case, validating both
methods. Moreover, fig. shows that the convergence of the objective function is faster for
the bridge than the cantilever. Comparing the shapes presented in fig. and fig. we
remark that structure optimized for loads centered in 0 is lighter and thinner than the structure
optimized for a load whose expected value is not equal to zero. Such result can be expected
since, on average, the pressure exerted on the first structure is less than the pressure acting on
the second one, and a thinner structure is enough to ensure the enforcement of the constraint
on the probability for the compliance to exceed the threshold 7.

Figure 5.10: Optimal shape for the bridge subject to vertical loads centered on 0.
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Figure 5.11: Optimal shape for the bridge subject to vertical loads, with an average compression
of 1.0 MPa.

Objective Constraint
\ —— Centered - p=1%
— 4 4 Noncentered 15 % —— Centered
g - Noncentered
O
- N
=S 10 %+
S 24 o
—_ By
3 5%
,,,,,,,, ,M,,A,,, FR
0 T T 0 % T
0 20 40 60 80 100 0 20 40 60 80 100
Tterations Iterations

(a) Evolution of the objective function. (b) Evolution of the constraint.

Figure 5.12: Convergence of the objective and the constraints for the optimization problem of
the 3D bridge.

Bridge optimization Centered | Noncentered
Execution

Number of iterations 100 100
Execution time [min)] 138 127
Results

Final volume Vol (Qpt) [cm?] 0.776 1.217
Excess probability P [Q (ug(w), ) > 7] 0.979% 0.961%

Table 5.6: Numerical results for the optimization of the volume of a bridge subject to five
uncertain mechanical loads on its upper surface.
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5.7 Conclusions and perspectives

In this chapter we presented a method to solve Reliability-Based Topology Optimization prob-
lems for elastic structures using a level-set representation and Hadamard’s approach to shape
derivatives. We limited our study to the differentiation of quadratic functionals of the displace-
ment. After having stated the optimization problem and the properties of the safety criterion,
we define a shape functional ® (-) measuring the probability to violate the criterion when the
random external loads follow a given probability distribution. We assumed also that the random
behavior of the external loads can me parametrized by a finite number N of random variables.
We computed the shape derivative of such functional by interpreting the set of situations when
the criterion is satisfied as an ellipsoid in RV and integrating suitable functions of the probability
density on its surface.

We aimed to avoid the numerical computation of the integral of the density function on the
surface of the N-dimensional ellipse, which can be computationally expensive and requires great
accuracy if the tolerance on the probability to exceed the safety criterion is low. Therefore, we
tested numerically the expression of the shape derivative using suitable quadrature formulas for
centered Gaussian distribution, as presented in appendix[C] In section we provided a different
method to compute and differentiate the functional ® (+) in the case where the uncertainties can
be parametrized as non-centered Gaussian random variables. In order to do so, we applied
the series expansion of the cumulative distribution function of generalized chi-squared random
variables as proven by Ruben in [214]. The reliability of both methods has been tested in [5.6| for
the optimization of two structures, subject to a constraint on the probability for the mechanical
compliance to exceed a threshold. One of the main advantages of this approach consists in
the fact that the computation of integrals on high dimensional domains is avoided. Instead
an analytic expression for ® (€2) and its derivative is used, which is extremely fast to evaluate
numerically, and can be computed up to an arbitrary precision.

The approaches detailed in this chapter are well-adapted for quadratic functionals of the
state of the optimization problem, like the mechanical compliance or the L2-norm of the stress.
However, the study of polynomial functionals of higher order is of particular interest, since they
can better approximate quantities like the maximal concentration of mechanical stress in the
structure. Thus, a future work could focus on the extension to more complex constraints.

A concept strictly related to the probability for a quantity Q (g, 2) to exceed a threshold 7
is the notion of Value at Risk. Let us consider a quantity p € (0,1). The Value at Risk at level
p for the random variable Q (g, ) is defined as the minimal V' € R such that the probability of
Q(g,N) toexceed Visl—p

P[O (g, Q) > VaR,] > 1 — p.

By definition, imposing that the value at risk at level p should not exceed a threshold 7 is
equivalent to impose that the probability for Q (g, €2) to exceed T should be below p. However,
being able to differentiate VaR; with respect to the shape would allow to consider it as the
objective in an optimization problem.

In this chapter we studied the differentiation of the failure probability for quadratic func-
tionals of the displacement, without any assumption on the size of the uncertainties. In [I1],
Allaire and Dapogny proposed a linearization approach to estimate and differentiate the failure
probability of a generic functional H(g,(2) at least differentiable with respect to g. The present
method can be adapted to replace the linearized functional with a quadratic approximation,
under the hypotheses of small perturbations and twice differentiability of H(g,2) with respect
to g.
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Innovative techniques of shape and topology optimization have found their application in a
large variety of fields, ranging from structural mechanics to aerodynamics, and from the design
of components in microelectronics to the study of complex lattice structures for composite
materials. However, in any industrial context, the performance of a structure should not be
measured only with respect to its behavior in a baseline situation, but also on its robustness
with respect to altered external conditions or perturbations in its manufacturing.

The main objective of this thesis has been the study of different approaches to the inclusion
of uncertainties in the optimization of elastic structures. In particular, we focused on the case
where the uncertainties lie in the mechanical loads applied to the structure. We considered shape
optimization problems where the objective is the minimization of the volume under constraints
dependent on the uncertain loads.

In the introductory chapter [I] we presented the main tools and concepts used in this thesis.
We started from general recalls on optimization problems and gradient-based algorithms to
solve them. Next, we presented Hadamard’s method to differentiate a function with respect
to the shape and we provided the expression of some generic functionals. Then, we focused
on the differentiation of shape functionals in an integral form, whose value depends on the
solution of an elliptic PDE. We provided a general formula for the shape derivative of this kind
of functionals, and we proved it by computing the Lagrangian derivative of the solution of the
PDE, and by Céa’s fast derivation method. Finally, we discussed in details the different aspects
of the optimization procedure adopted in this work.

In the first section of chapter [2| we recalled the equations of linear elasticity and the definition
of the mechanical compliance and the von Mises stress. In section we considered the opti-
mization of an elastic structure subject to a time-dependent thermal field, under a constraint on
the mechanical compliance. The constraint functional chosen in our example takes into account
both the average of the compliance in the time interval of the simulation, and its value at the
final instant. In section[2.2.3] we provided an expression for the shape derivative of the constraint
functional. We showed also that the adjoint to the temperature solves a differential equation
backwards in time, and that the weak coupling of the adjoints is reversed with respect to the
coupling of the temperature and displacement fields.

These results ought to be considered as part of an ongoing project aimed at the study of shape
optimization problems of elastic structures subject to uncertain and time-variant temperature
fields. Another direction of research on the subject could be the study the sensitivity of the
thermal compliance with respect to the different parameters of the problem. Finally, the model
can be enriched by considering other phenomena like the occurring of thermal radiation or the
dependence of the material properties from the temperature of the structure.

The chapters in part [[] presented three different ways to take into account uncertainties
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and perturbations on the external loads while solving shape optimization problems. All shape
optimization problems considered in part [T had the following structure

Find the admissible shape Q € Sagm
minimizing the volume Vol(£2)

under the constraint F [H(ug, Q)] <7,

where the displacement ug(w) € H%D (Q)?

solves the elasticity equation

—div (o (ug(w))) = f in §,
o(ug(w)n = gw) only,
o(ugw))n = 0 on Iy,

ugp(w) = 0 on I'p,

for almost all event w € O.

The operator F [-] associates a deterministic quantity to the random variable H (ugq, 2), and
different approaches lead to different choices of F[-]. A common feature to all techniques
considered in part [[I] is the avoidance of sampling methods to estimate the impact of the uncer-
tainties on the objective and constraint functionals, since they can be extremely costly from a
computational point of view.

In chapter 3| we studied optimization problems under a constraint on the worst-case scenario,
so that the constraint reads F [H (uq, Q)] = esssup,,cp H (uq(w), ). We proposed two different
techniques. In both cases we supposed that the external loads could be parametrized as elements
of a finite-dimensional compact and convex set G.

The first method, introduced in section[3.2] applies only to convex functionals of the uncertain
parameters, and consists in approximating G by a polyhedron Gy, thus transforming the original
optimization problem into a problem with multiple deterministic constraints. The null space
optimization algorithm is well suited to the solution of multi-constrained problems, as shown in
[114] and in the simulations of section Moreover, we have been able to show numerically and
theoretically the convergence of the approximated solution with N constraints towards the exact
solution, when N tends to infinity and Gy converges towards G with respect to the Hausdorff
distance. However, the number of vertices required for the polyhedron Gy to properly represent
G increases rapidly with the dimension of G. Therefore, this method is not viable if dimension
of the set of admissible loads is too high.

The second technique, discussed in section relies on the computation of one element of
the subdifferential 9H (uq, 2). The numerical simulations of section show that the approach
based on the subdifferential is faster than the method based on the polyhedral approximation
of G, since it requires fewer computations of shape derivatives. However, we remarked that the
technique of the subdifferential suffers from wide oscillations impairing the convergence when the
constraint functional is maximized by multiple elements of G. Further research could focus on
the characterization of the subdifferential of the constraint and on the design of an optimization
algorithm capable to take into account multiple elements of OH (ugq, €2).

RTO are the main focus of chapter 4, meaning that F [H (uq,2)] has been taken as the
expectation of H(ugq, ). Our main objective has been the extension of the results obtained by
Dambrine, Dapogny and Harbrecht in [80] to polynomial functions of degree m of the uncertain

174



loads. We were able to compute a tensor formulation for the optimization problem by introduc-
ing a suitable correlation tensor of order m, proving that the expectation of an m-multilinear
function depends on the m first stochastic moments of the perturbation. However, such expres-
sion is impossible to solve numerically as a consequence of the high dimensionality of the tensor
space. Therefore, we limited our study to perturbations of finite rank N.

In section [.4] we tested our approach for the optimization of a structure under a constraint
on the LS-norm of the von Mises stress, and in section we showed how this method can be
used to compute the shape derivative of the variance of a quadratic functional. Similarly to
the first approach of chapter [3] this method suffers from the curse of dimensionality. Indeed,
the number of components the shape derivative grows exponentially with the rank N of the
perturbation due to the presence of numerous cross terms. One possible approach to this issue
is the application of tensor decomposition techniques to the correlation tensor, in order to isolate
the components responsible for the largest part of the constraint functional. This method would
allow to reduce the number of components to take into account in the expression of the shape
derivative by accepting a systematic error in the evaluation of the constraint.

A different strategy to be investigated consists in associating a weight to each of the N
components of the perturbation. Since all terms of the constraint functional are obtained by
combining m components of the random load, each one can be associated to a weight defined as
the product of the weights of its parts. By limiting the computation of the constraint functional
(as well as its derivative) to the terms with a weight larger than a given tolerance, it should be
possible to reduce the complexity of the expression while controlling the error.

Finally, in chapter [5| we focused on RBTO problems for quadratic functionals of the state,
where the applied loads are subject to perturbations of finite rank N. This approach is partic-
ularly interesting if the aim of the optimization is to be able to control the failure probability
of a given structure. The expression of F [-] chosen for this last case has been F [H(ug, Q)] =
P[H (uq, ) > 7].

In section [5.3| we provided a generic formula for the derivative of the failure probability for the
case where the random variable describing the uncertain loads admits a density function. The
coefficients of the several components of the shape derivative have been computed as integrals
of the probability density function on the surface of an N-dimensional ellipsoid. In section
we provided an alternative technique to compute and differentiate the failure probability for the
case of Gaussian perturbations, avoiding numerical integration in large dimension. This new
approach relied on the series expansion of the cumulative distribution function of a non-central
chi-squared random variable proven by Ruben [214]. This method scaled well with the rank
of the perturbations since the shape derivative of the failure probability can be written as the
weighted sum of just (N + 1)? derivatives. The weights of each term have been computed by an
inexpensive recursive relation.

The simulations of section show the efficacy and the accuracy of both approaches in
multiple cases. As an example, we cite the comparison between the results of section |3.4.1
and section (.60l In both cases we aimed to minimize the volume of a 3D cantilever under a
constraint on the mechanical compliance. In the first case the constraint applied on the worst-
case scenario, while in the second we imposed that the event of the compliance exceeding a
threshold 7 should happen with a probability lower than 1%. The two approaches yielded very
similar results, but the probabilistic approach has been slightly faster and its performance would
not be impaired by the addition of further uncertain loads. Possible directions of further research
in the RBTO approach consist in the search for results analogous to the ones of section for
functionals other than quadratic. Other possible developments include the computation of the

175



Conclusions and perspectives

shape derivative of the Value at Risk, and the extension of the linearization approach of Allaire
and Dapogny [11] to include a second order approximation of the functional of interest.

The main objective of the present thesis has been the study of different approaches to address
the presence of uncertainties in the solution of shape and topology optimization problems. The
methods proposed in this work have been presented and tested for elastic structures. However,
their scope is larger than the context of linear elasticity, and future works on this subject may
focus on the implementation of the aforementioned techniques in a wider array of situations. As
stated in chapter [2] some studies have already been launched concerning the application of RTO
techniques to elastic structures subject to time-dependent and uncertain thermal perturbations.

All methods discussed in part [[T have been analyzed from the theoretical point of view, and
tested on academic examples. However, in engineering applications, the constraints on uncertain
functionals would have to concur with other kinds of constraints concerning various aspects of
the structure, as its manufacturability, or the interactions with its surroundings. A natural
extension of this work is the application of the methods detailed in this work to structures
with an industrial interest, and the development of numerical tools to deal with the increased
complexity of the problem. Some preliminary study on the application of the aforementioned
techniques to mechanical pieces is currently ongoing at Safran Helicopter Engines.
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Appendix A

Some shape calculus formulas

In this appendix we recall some formulas and propositions which have been used throughout
this thesis for the computation of shape derivatives. For the entirety of this appendix we

d
will suppose that Q is a Lipschitz continuous domain in R%, and § € W1 (Rd) a Lipschitz
continuous displacement field such that 6], ., < 1.

Contents
[A.1 Shape derivatives on variable domains| . . ... ... ... .... 179
[A.2 Differential operators under a change of variables|] . .. ... .. 180
[A.3 Shape derivatives of common expressions| . ... ... ...... 181
[A.4 Integration by parts| . .. ... .. ... ... 0000000, 181

A.1 Shape derivatives on variable domains
In this section we recall the results of proposition [1.§] and proposition [1.12

Proposition A.11 (Shape derivative of a volume function). Let f € W1 (Rd) be a real valued

function, and Saqm a class of Lipschitz continuous domains in R?. Let Q € Spam be a domain
such that, for any admissible displacement field 8 € ©,q4, the perturbed domain Qg belongs
to Saam- Then, the shape functional ® : Q — [, f(x)dx is shape differentiable in Q and its
derivative can be written as

DH(Q)(8) — /Q div (0(x) f(x)) dx.

If, moreover, 2 has a Lipschitz continuous boundary, the shape derivative of ® can be also
expressed as

Do(©)(9) - |

o0

(n(s) - 8(s)) f(s) ds.

This result is reported and proven in section [I.2.1] as proposition [I.8

Proposition A.12 (Shape derivative of a boundary functional). Let 2 be a C?> domain with
Lipschitz continuous boundary, and g € W21 (]Rd) a real valued function. Then, the shape
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functional ® : Q — g(s)ds is shape differentiable in Q, and its derivative is expressed as
oN

DB(Q)(8) = /@Q (Vg8 +gdive ) ds. = /m (n(s) - B(s)) (gfl + Hg) ds.

The operator divr denotes the tangential divergence defined in definition The quantity
H : 092 — R is the mean curvature of the surface, and is introduced in definition The

aforementioned result is reported and proven in [6 Proposition 6.24] and [I38, Proposition
5.4.18].

A.2 Differential operators under a change of variables

Here we list the expression of different operators under a change of variables. Let us consider
d
a Lipschitz continuous vector field 8 € WhH>® (Rd) . The mapping defined as g : x — y =

(I+60(x))x is a diffeomorphism in R?. In this section we denote by an index "y" the differential
operators computed with respect to the perturbed reference system.

« Gradient of a scalar function. Let us consider ¢ € C! (Rd) a continuous scalar func-
tion. Then
Vy (o (T+6)71) = (1+ V) "Vy

where Vi is a column vector, and VO = [VOy]---|[VOx]".

« Product of gradients. Let ¢, € C! (Rd> be two continuous scalar functions. Then
Vy (o (T+0)7)-Vy (vo(1+6)7") = (AgVe) - Vo,
where the matrix Ag € R%*4 is defined as
Ag=(T+VO) 1 (1+Ve) T
d
« Gradient of a vector function. Let v € C! (Rd) be a smooth vector field. Then
Uy (voI+6)7") = Vv (1+V6)™,
where Vv = [Vvy]---|Vvy]T.
d

« Divergence of a vector. We consider a smooth vector field v € C! (Rd) . Then

divy (vo (I+6)7") = (I1+ V)™ : Vv.

d
« Product of gradients via an elasticity tensor. Let v,w € C! (Rd) be smooth vector
fields, and C a fourth order tensor satisfying the assumptions of section Then
CVy (vo(1+6)7): Vy (wo (1+6)7") =C(Vv(I+V0)!) : (Vw(l+Ve) ™).
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e Volume integral. Let ¢ € L!'(Q) be an integrable real function, and Qg = ®g(Q2) a
deformed Lipschitz continuous domain. Then

/ cpo(I—i—O)_l(X)dx:/ o(x) |det (T + V8)| dx.
Qg Q

« Surface integral. Let Q C R? be a bounded domain with a C! surface, and ¢ € L (99)
a real-valued function defined on the surface of 2. Once again, we denote {29 = Pg(2) the
domain obtained by the deformation ®g, and 9€)g its surface. Then

Ypo(I+6)t= / Y(s) Jacon (I + 0) ds,
80 a0

where the Jacobian term is defined on each point s of 0{2g as
Jacoo (1+6) () = |[(1+ V6) " n(s)| det(I + VO)|.
A.3 Shape derivatives of common expressions
~ d
Let 8,0 ¢ Wh® (Rd> be Lipschitz continuous vector fields defined on R¢. We collect in this

section the expression of the derivatives with respect to 8 of quantities appearing frequently in
the computation of Hadamard shape derivatives.

(6) = —V6.
60=0

o L(I+VO)Y

. % (|det(I+V0))) (6) = —V - is the derivative of the Jacobian term appearing in the

6=0
expression of a volume integral under change of coordinates.

o & (Jacon (I+6)) (8) = divyg 6 = div @ — (VO n) -1 is the derivative of the Jacobian

=0
for surface integrals under change of coordinates, and n identifies the unit vector normal
to the surface. This identity is proven in [I38, Lemma 5.4.15].

|e

L(C(Vv(I+ V)™ : (Vw(I+VE)™)| (8)=-CVw:(VvV8)—-CVv: (VwVE),
6=0

d
where v,u € C! (R?)  are smooth vector fields, and C is a fourth order tensor respecting
the constraints of Hooke’s elasticity as listed in section [2.1.1]

[N

A.4 Integration by parts

Let Q € R? be a C! domain, and let us denote n(s) the unitary vector normal to the surface of the
domain in s € 9. As proven by Hadamard’s structure theorem (see theorem , the shape

derivative of a differentiable function on a C! domain Q C RY evaluated in 8 € WL (Rd)

depends only on the normal component of 6 on 9. For each s € 912, we denote éf(s)Athe
component of 6(s) tangent to J€2 in s. Thus, on the surface of the domain €2, the vector 6(s)
can be decomposed as 6, + n(6 - n).
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Appendix A. Some shape calculus formulas

In this section we report the results of the integrations by parts of some expressions appearing
in the computation of shape derivatives. In particular, we express each integral as the sum of
a volume term, and two surface terms depending on the tangent and normal components of 0
respectively.

o Let ¢, € C' () be two continuous and differentiable functions. Then
/ng(x) div (1/1 @) dx = —/Q(é V) h(x)dx + /m@(s) ¥(s) (6 -n)ds.
o Let o, € C?(9) be two continuous and twice differentiable functions. Then
/Q (VO Vo) Vpdx = —/5 div (Vi) @ V) dx

0p OV ~
+/ma (vw 9 ds +/Qanan (6 -n)ds.

d
e Let us consider two vector-valued functions f,g € C? <Rd) and a fourth-order tensor C.
Then

/Q (Cvt: (VgVo)) dx = - /Q 8- div (Vg" CVf) dx

~ g -~
+ /a Q(Can)-(VgTOT)dH /8 (CVin)-

. ™ (6 - n)ds.

« Let us consider a C? vector valued function f, and a scalar function ¢ € C! (Rd). Then

/gp(x) (VE": V8) dx = —/5 div (p£7) dx
Q Q

~ Of of ~
+/89 <07.8n> <,0ds+/ém <n 6n> v (0 -n)ds.

d
e Let f,gecC! (Rd) be two continuous and differentiable vector functions. Then

/diiv(f@)a) dx:—/ﬂa.(ngf) dx+/89(g'f) @ n)ds.
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Appendix B

Alternative proof of proposition 5.2

In this annex we provide an alternative proof of proposition[5.2] which does not rely on lemma

Alternative proof of proposition[5.3. As first step, we consider the expression of the func-
tional @ (-), and we apply the change of variables y = %MQI/ 2x in order to express ® (-) on
the unit sphere:

=, dX*\/det [y

The shape derivative of equatlon ) can be written as the sum of two terms, that we
denote A(@) and B(0).

i [ (vMaey)aye)
det Mgq JBy @ Y)Y
_py - (0)/ (VMo 2y) dy + ™ Df (VMo ~'2y)(8)d
det Mg By @ y) det Mq JBy it y y
A(6) B(6)

We develop A(0) and B(6) separately. In order to express A(6), we apply Jacobi’s formula for
the determinant of an invertible matrix M [174]):

% [det M(2)] = (det M(2)) tr (Ml(t) dtM(t)) . (B.2)

Therefore, we have

A(9) = N2 ( /B 7 (VMo 12%y) dy) D(det M)~ /%(0)

—= 5 () (Va2 dy ) ot M) (et Mo 0 B
__ WLMQ)@ () tr (Mg~ 'DMq()) = —%@ () tr (Mo~ 'DM0 (6))

For the term B(8), we remark the following identity:
divy (f (VPMa™'2y) Mo'/*DMo~"/%(9)y )
=7 (Vyf (ViMa™%y)) - (DMo~/2(0)y) (B.4)
+ £ (VMo 2y ) tr (Mq!/2DMo~1/%(9) ) .
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Appendix B. Alternative proof of proposition

Thus, using equation (B.4]) and Green’s formula, and observing that on the surface of the unit
sphere Sy_; the unit normal vector in y € Sy_; is y itself, we can decompose B(0) in two

terms:
N
T _ _
)—_,/det o o Vyf (\EMQ 1/2y) : (ﬁDMQ 1/2(0)y) dy

N
— M —-1/2 M 1/2DM -1/2 .
\/ der g /Sle(\E Q S)( Q Q (9)5) sds

B1(0)

—tr (Mq!/2DMq~12(0)) /

By

(B.5)

N

det M

f (\FMQ‘W.Y) dy .

B2(0)

In the expressions of B1(0) and By(0) in - the term Mgq2DMg,~ 1/2(0) appears. In
order to characterize this term, we cons1der the identity I = Mg~ 1 Mg Mq™ 1/2 and we differ-
entiate it with respect to the shape:

0 =DM /2(6)Mq Mo~ Y2 + Mo~ /2DMgq(8) Mg ~1/2
+ Mg /*Mq DM /%(8).

Considering that Mg is a symmetric matrix, and that M, 1/?

is symmetric as well, we deduce:
Mq'2 DM, /2(0) = Mgfl/QDMQ(o) Mg /2, (B.6)

Using equation and the fact that, if F and G are square matrices, tr(FG) = tr(GF),

we remark that:
Mg~ Y%y) dy tr (Mq'/?DMq " "2%(0
\/det i f (VMo Y 2y) dy tr (M 9))

= 2@(Q)tr (MQ 1/2DMo(6) Mo~ "/2) :§<I>(Q)tr (Mo ™'DMq(6)) = —A(8).

Therefore, the shape derivative of ® (+) in  consists only in the term B;(0)

DD = ;F [ 7 (vMa2s) (Mo /2DMo(8) Mg 1/%s) - sds.  (B.7)
det M Snv-1

Comparing the expressions and (B.7)), we conclude that the two approaches to compute the
shape derivative of ® () are equivalent. O
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Appendix C

Quadrature formulas for the
centered Gaussian distribution

In this appendix we present some quadrature formulas to integrate multivariate Gaussian den-
sities on the unit sphere or the unit ball in an arbitrary number of dimensions N. We propose
recursive relations to express such integrals, which scale well with the dimension NV of the Gaus-
sian vector.

Contents
[C.1 Notations and definitions| . . ... ... ... ... ......... 185
[C.2 Integrals on the sphere|l. . . . . . . ... .. oo 000 186
[C.3 Integrals on theunitballl . ... ................... 192

C.1 Notations and definitions

Let N be a positive integer. We denote By the unit ball in RV centered in the origin, and
Sy_1 = OBy the N-sphere

By = éxERN : ||x||§1{,

Sy-1 = xeRY: |x|=1

The space of real valued square integrable functions on the unit sphere is the space L? (Sy_1),
which is a Hilbert space with respect to the inner product (-, .>SN—1 :L2(Sy_1)xL2(Sy_1) = R
such that

(D, V)gy , = /S o(s) P(s)ds for any choice of ¢, € L? (Sy_1).

The main objective of this section is the analytic computation of integrals of the quadratic
form x (XTM x) on By and on Sy_1, where M is an N x N real symmetric matrix. By
extension, the knowledge of the expression of such integrals would allow to compute the integral
on the ball or on the sphere of any function of the type x — f (XTM x), where f: By — R is
analytic. A first remark on such integrals is the fact that, given the symmetry of By and Sy_1,
the value of the integral of f (XTM x) on either the ball or the sphere is independent from the
choice of the cartesian reference, and depends only on the eigenvalues of M. Therefore, without
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Appendix C. Quadrature formulas for the centered Gaussian distribution

loss of generality and for the entirety of the current section, we focus on quadratic functions in
the form x +— (XTD x) where D = diag {\1,..., Ay} is an N x N diagonal matrix.

In this section we propose an iterative method to compute integrals of integers power of a
quadratic function on the IN-sphere and on the N-ball. Such technique does not require the
numerical computation of high-dimensional integrals, but relies on a recursive formula and its
complexity increases linearly with the dimension V.

C.2 Integrals on the sphere

We are interested in the computation of the integrals on the unit N-sphere < f(s"Ds), 1>

N—-1

and <f(sTD s), 522>S for any i = 1,..., N and for f(-) regular on By. Our method relies on

N—-1
a Taylor expansion of f(-). The coefficients of the series are computed thanks to a recursive

relation, and we provide an upper bound for the truncation error. The computation of the
recursive relation relies on the properties of the spherical Laplace operator Ag, _, : C%2(Sny_1) —
C° (Sy_1), that is the Laplace-Beltrami operator on the sphere Sy _1, considered as a Riemannian
manifold. The Laplace-Beltrami operator on Sy_1 is defined for any function ¢ € C% (Sy_1) as
follows
ASNflgb = diVSNA (VSNflqb)’ (C'l)

where divs, , and Vg, , represent the divergence and gradient operator on the manifold Sy_1
respectively, as introduced in definition [I.9

Given a C? (Ay) extension b of ¢ € C? (Sn_1) to an open neighborhood Ay C RY of Sy_1,
it is possible to compute Ag, ¢ thanks to the following result, derived from [I38, Definition
5.4.11 and Proposition 5.4.12]

d¢ i)
or or2|, _,

Some important properties of the operator Ag, , used subsequently are compiled in the
following result.

Agy ¢ =divsy (VSNflgb) =A¢p—(N—-1)

(C.2)

r=1

Theorem C.13. The Laplace-Beltrami operator Ag,_, is self-adjoint with respect to the scalar
product (-, '>SN71' The spectrum of the operator As, , is the sequence {{},—,, where, for all

k>0, l,=—k(k+ N —2), and each ly has multiplicity L,iM(N;ﬁl_?’)

The proof of the self-adjoint nature of the operator Ag, , can be derived using [I38, Lemma
5.4.10], or deduced from the result presented in [236] for a generic complete Riemannian manifold.
The result about the eigenvalues of Ag, ,, as well as other results on spherical harmonics, can
be found in [I0§].

Proposition C.14. Let D = diag{A1,...,An} be a N x N diagonal matriz. Then, for any
2 k
k > 1, the quantities <(STD s) , 1> and <(STD s) ,82> satisfy the following recursive
Sn-1

)
Sn-1

(0o, = w0 ),

Snv-1

<(STDS)’“,83>8N1 = iz <<<STDS>k_1,1>SN_1 (C.3)

relation:

%

k-1
+ 2k/\i<(sTDs) ,52> ) for1<i<N.
Sy-1
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C.2. Integrals on the sphere

The initial value of the recurrence (C.3|) is given by:

o o 27.(.]\7/2
<1’ 1>SN71 - |SN71| - F(%)’ (C 4)
1,1 :
(1,82)g, = Btl= < >fVN—1 for 1 <i<N.

Proof. We start by proving the identities (C.4)) on the starting point of the recurrence using the
formula found in [TI8]. Let us consider o € NV, and P, be a monomial defined on R in the
form Pn(x) = x* = 27" ... 2%". Then, the following identity holds:

/ Pa(s)d 0 if some «; is odd,
alS)ds = .
SNn_1 2% if all oj are even,

where §3; = %OéjJr]_ forall j =1,...,N.
Now we can prove the first equation of (C.3).

<(STD s)k, 1>SN_1 = <(STD s) (sTD s)kil, 1>SN_1 —ji::l/\j <<STD s)kil, S?>SN_1 .

In order to prove the second equation of ((C.3]) we have to consider the following two expres-
sions:

Agy_ysi = —(N —1)sy, (C.5a)
ASN—l‘SZZ =2~ QNS?v (C.5Db)

as well as the identities valid for all ¢, v € C?(Sy_1):
Asy_ ¢ = divsy_, (Vsy_, %) = ¢Asy_ ¥ +PAsy_ ¢ +2Vsy ¢~ Vsy_ 9, (C.6a)
ASN—1¢k = diVSN—l (VSN—1¢k> = k‘bkilASN_l(b + k(k - 1)¢k72 HVSN—1¢H2 : (Cﬁb)

Moreover, thanks to equation (C.2) and to the definition of the tangential gradient, we also
know that:

Vsy_,S'Ds = VxI'Dx — s% =2Ds — 2(s™Ds)s,
r=1
Asy ,s"™Ds= Ax"Dx — (N -1)&Dx| _#xDx|  _9yD - 2NxTDx,
r=1 r=1
Vsyisi=  Vey,(eis) = V(e x) —s7G = ei — 58,
r=1

where x belongs to a neighborhood of Sy_; € RV, s = x/ ||x||, and e; € RY is the i-th element
of the canonical basis of RY. Therefore, we get the following expressions

fean (o)

Asy_, (sTD s)k =k (STD s) o Asy_, (STD s) + k(k—1) (STD s)
=2k (sTD s) e (trD — N(s'D s)) +4k(k —1) (STD s)k_Q <STD2 s — (sTD s)2>

—4(s"Ds)" " (k(k — 1) (s™D?s)) +2(s"Ds)" ktrD — 2 (sTDs)" (kN + 2k(k - 1)()C .
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Appendix C. Quadrature formulas for the centered Gaussian distribution

AN T <(STD s)k si) = 5;Asy_, (sTD S)k + (STD s)k Asy_,5i + 2V§N71(STD s) - Vsy_,Si
=45; (s"Ds) o (k(k=1) (s"D?s)) + 25 (s"Ds) (kD + 2k\)

k
— 5 (sTDs)" (26N + 4k — N +1)
(C.8)
Using equation (C.5al) and the self-adjoint nature of the Laplace-Beltrami operator we get:

—(N-1) <(STD s)ksi,si>S = <<STD s)k SivASN_1Si>S
N-1 N-1

= <ASN1 ((STD s)k Si) , Si>SN1 =4k(k —1) <(STD s)k_2 (STD2 S)a S?>SN1

. Th ) ! 2> _ 2 B < ™ )" 2>
+2k(trD+2)\)<<s Ds) s (26N + 4k + N =1) ( (s"Ds) s -

Sn-1

Thus

sk (03) () 8), seiem o (o)),

Sn-1

) (C.9)
—k (N + 2k) <(STDS) ,s?> =0
Sy-1
We perform the same procedure on (C.5b)
2 <(STD S>ka 1>SN1 - < (STD S>k7 S%>SN1 - <(STD S>k7 ASNIS?>§N1
- <ASN1 (s"D s)k, s$>SN_1 = 4k(k — 1) <(STD s) - (s'D? S)’S?>SN_1
+2ktrD <(STD s)kil, s?>SN1 — 2k(N + 2k — 2) <(STD S)k7 S?>SN1 :
Therefore
2k(k — 1) <(STD ) (s S)’S?>SN1 Fhub <<STD ) S?>SN1 (C.10)

k
—k (kN + 2k% = 2k + N) <(STD s) ,Sg> —0.
Sn-1
By subtracting (C.10) from (C.9)) we get

(N + 2k) <(STD s)k, SE>SN_1 — 2k <(STD s)k_l, 33>8N_1 - <(STD s)k, 1>SN =0 (C.11)

proving the second identity of (C.3]). O

Given the result of proposition we state a result about the development of the quantities
<f(sTDs),1> and <f(sTDs),sz2
Snv-1

providing also an estimate on the error intoduced truncating the sum after n terms.

as infinite sums for f sufficiently regular on By,
-1
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C.2. Integrals on the sphere

Proposition C.15. Let D = diag {\1,...,An} be a diagonal matriz. We consider f : R — R to
be an analytic real valued function admitting an extension f: C — C such that f is holomorphic
on a disc centered in 0 with radius r > |\;| for all 1 < j < N. Then, the following expansions
in infinite series hold for all 1 <i < N

Sn-1

(f(s"Ds),s7) = gjo f<’2!(0) <(STD s)k, 8’2>le . (C.12b)

Sn-1

<f(sTD s), 1> = ki:%) f(]:!(O) <(STD s)k, 1>SN_1 , (C.12a)

Moreover, if the sums in the expressions (C.12a)) and (C.12a)) are computed up to the first

n terms, the truncation errors committed can both be bounded by the same quantity E}runc(n)
defined as

M
[trunc — ISy fnt1 An+1 C.13
) = (Bl LA, (©13)

where A = max {|\;| : i=1,...,N} and My, 11 > Y (c) for all ¢ € hull {0, A1, ..., An}.

Proof. Since f is supposed to be holomorphic on the disc centered in 0 with radius r, for any

(k)
z € Csuch that |z| < r, the series Y 7o ! k!(o) 2 is absolutely convergent and converges to f(z).
Since, for all s € Sy_1, s™Ds < r, we can use Fubini’s theorem to swap the integral and the
sum. Therefore, we prove the identity (C.12a)) as:

T <§: f(]:!(()) (sTDs)k,1> :/S i f(]:!(O) (STDs)k ds

k=0 SN—1 N-1 k=0
= f®(0) / T N\ =, f®(0) < T\ >
= Ds) ds= Ds) ,1
kzz:o il - (s s) S kz::o il (s s) -

In order to derive the error estimate, we start by remarking that, if x € Sy_1, then (xTDx) €
hull {0, A1, ..., An}. Therefore, using the Lagrange form of the remainder for the Taylor series
[25, Section 7.7] and considering n € N fixed, we get:

> rk)(p k > r(k)(Q
> O (pe) ) <gsval| S L0 gy
k=n+1 : Sny-1 k=n-+1 : (014)
Mpnt1 | ng1 Mfni1 \nta
< ) < R 5 L Bl

for any « € hull {\,...,An} and where My, > ‘f(”ﬂ)(x)‘ for all ¢ € hull {0, A, ..., An}.

In order to find the identity (C.12b|) we perform the same procedure on < f(s™Ds), s? >S
N-1
O

By applying proposition to the function z — ™% we get the following result.
Corollary C.16. For any diagonal matriz D = diag {\1,..., AN}, it is possible to develop the
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Appendix C. Quadrature formulas for the centered Gaussian distribution

., —(s™Ds) —(sTDs) 2
quantities <e ,1> and <e s >SN_1 as follows

94
N—1

<e_(STDS), 1>SN71 = i (_kl')k <<STD s)k, 1> : (C.15a)

k=0
—(sTDs) .2 _ - (_1)k< T k 2>
<e ’SZ>SN,1 —kZ:% o (s Ds) , 8 . (C.15b)

The truncation error for (C.15al) and (C.15b) fired n € N, has as upper bound the quantity
E™nc(n) defined as:

trunc € min(0, Amin) n+1

The procedure detailed in proposition |C.15| allows to compute the terms < f(s"Ds), 1>S
N—-1

and < f(s"Ds), 822>SN 1 without performing neither a high-dimensional numerical integration on

Sy —1 nor a Monte Carlo simulation. Moreover, given the structure of the recursive relation ,
the complexity of the procedure is linear in N, thus it is free from the curse of dimensionality.

If all eigenvalues A1,...,An are strictly positive, the expressions and ap-
pear as infinite sums of alternating terms. On the one hand, alternating series provide a simple
method to estimate the error once the series of the coefficients is monotonically decreasing (Leib-
niz’s rule, presented as in [25, Theorem 10.14]). On the other hand, the terms of the alternating
series might become large before definitely converging towards zero, and an alternating sum of
large numbers can result in considerable numerical errors due to floating point arithmetic (see
[125]). Fortunately, there exists an equivalent formulation of the series (C.15a)) and (C.15b))
which is more adapted to numerical computations, as stated by the following result.

Proposition C.17. Let D = diag {A1,..., AN} be a positive definite diagonal matriz where
A1 > ... > Ay > 0. We denote D = D/ the rescaled diagonal matriz. Then, the following
identities hold for all 1 <i < N

(01 e S M (1-D)s) ) (C7a)
-1

k=0 "V* Sn-1

(), = D E-D) ), eamy
— . N—1

The quantities <<sT (}I — f)) s)k, 1> and <<sT (]I — f)) s)k, 312> fulfill the following
Sn—1 Sn-1

recursive relation for all k > 1 and 1 < i_g N

(r-p)a) ), = s (- () ),

((Fa-p)9) ) = Ui
Sn_
e . 2 N-1 ) <1,s$)SN71 ok a Ty w k—1 >
I-D 1 I-D
(Em(-D)s)s) = S e (1-3) ((F(-D)e) )

for2 <i < N.

(C.18)
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C.2. Integrals on the sphere

The recursive relation (C.18) is initialized by:

/
(L)sy, = ISnval= ?&; ©.19)
11 .
(Lsfg, , = |Sz\]rv—1| _ >]§]N—1 for1<i<N.

If the series in the expressions (C.17a) and (C.17b) are approzimated by the sum of their first n

terms, the truncation errors can once again be bounded by the same quantity EX%¢(n) defined

as
oy ISN-1] (A = Ay)"H!
N (n+1)!

Etrunc (TL) —e

resc

(C.20)

Proof. As first step, we modify the expression of the function s — e~(5"Ds) in order to isolate
the factor e™M.

—(sTDs) -\ (sTDs) _ M(—sTstsT(I-D)s)  —x; A\ sT(I-D)s

for any s € Sy_1.

Since the matrix —A; (I — D) is diagonal, we can apply corollary |C.16| and derive the ex-

pressions (C.17a)) and (C.17b) from (C.15a)) and (C.15b) respectively. The recursive relation
(C.18)) and the initialization (C.19)) derive from the application of proposition remarking
A2
A I

that (1—D) = diag {0, Sy (1=}

Finally, in order to estimate the truncation error, we remark that, for all £k > 0

0< e_)‘ljf <(ST<]I — ]5) s)k,8%>SN_1 < 6_/\1)]:1: <(ST(H o f)) S)k’ 1>

Therefore, any upper bound for the truncation error on the series ((C.17a)) holds also for the
truncation error on ((C.17b)). Next, we bound the truncation error, exploiting the uniform
convergence of the series (C.17al) to swap the sum and the integral defining the scalar product.

(), =S (o)) )

k=0

<e>‘1$T (I-D)s _ Zn: ?ﬁ (sT (]I — f)) s)k, 1>
Sn-1

k=0
k
<e ™M < ) 1>
S

Using the error estimate deriving from Lagrange’s form of the remainder as in proposition
and remarking that sT (]I — D) s € [0, 1-— ’E\—ﬂ for any s € Sy_1, we find the estimate

Sn-1

Sy-1

= e_>\1

s (1-D) s kZ"% 2’}“ (ST (H B f)) S)

N—-1

s (1-B)s _ §~ Ab (s*(1-D)s)"

M _
S (s"(1-D)s)".
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Appendix C. Quadrature formulas for the centered Gaussian distribution

dntl e~ Amaxt

qmFT < )\711—"_16)\17)\]\7 for all

where M >

for all t € {0,1 — %} Since ‘dd:n%e*/\lt
t e {0,1— /\—N} we get
N RIS (5 (1-)s)

1
k
k=0 S

_ )\n+l 3 "
S R <(ST(H_D) S)k+l’1>gm

cow AT ISh (1 B AN>"“ _ o A=A S
- (n+1)! N A1 (n+1)! N

N—-1

k
We conclude this section with a result on the inner products <(STD s) ,sisj>

Sn-1

Lemma C.18. Let D € RV*N be a symmetric matriz and f : RV — R a function such that
(s — f(s"D s)) € L2(Sy_1). Then, for any pairi,j € {1,..., N} such that i # j,

<(STD s) , Sisj>sN,1 = 0.

Proof. Let us consider the change of variables s — s such that sy = s, if £ # j and s; = —5;.
Then
/ F(sTDs)s; s, ds = —/ fE'D8)3; 5; ds. (C.21)
Sn—1 Sn-1
T o _
Therefore <<s Ds)7sls] >SN—1 =0. [

C.3 Integrals on the unit ball

The integration of the exponential of a quadratic form of x on the unit sphere is a classical
problem in probability theory. Let us consider a random vector X = (X1,..., Xn)" ~ N (0,1),
and we denote T' the random variable

T=XTDX=MNX?+... +IvXZ. (C.22)

If i = ... = Ay = 1, the integral of exp (7‘ x'D x) is strictly related to the cumulative
distribution function of a x? random variable with N degrees of freedom. Indeed:

()2

(27T)N/2

G 1
/ e IxI® gx = p [X € IB%N] =P[T < 7] =Fpeu(r) foral 7>0.
By T

In this section we focus on the case where X ~ N (u, Y) is a Gaussian random vector whose

mean g is zero, and we propose an iterative method to compute the integral of the function
k

e~*'DX on the unit ball B ~ based on the terms <<STD s) , 1> defined in section|C.2l Such

Sn—1
technique does not require on the numerical computation of high-dimensional integrals, but

relies on a recursive formula and its complexity increases linearly with the number N of random
variables involved.
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C.3. Integrals on the unit ball

Proposition C.19. Let D = diag{\1,...,An} be a diagonal matriz. Then, the following

identity holds:
—xTDhx - (_l)k < T k >
e dx = ——((s"Ds) ,1 , C.23
/BN kz:% (N +2k) k! ( ) Sn_1 ( )

k
where the quantities <(STD S) 71> satisfy the recursive relation of proposition |C.14)
Snv-1

Moreover, if the sum (C.23) is stopped after n terms, the following estimate on the truncation
error holds:

/IBN e X' Dxx — Zn: (N(—;12):)k' <(STDS)k, 1>

k=0

e~ Min(0Amin) [y A+
< ’
T (N+2n+1) (n+ 1)

(C.24)

Sn-1
where Amin = min{\1,..., Ay}, and A =max {|\;| : je{l,...,N}}.

Proof. The proof relies on the expression of the left-hand side of (C.23)) in spherical coordinates
and the absolute convergence of the Taylor expansion of the exponential.

1
T 2T
/ e X DX x ——/ pN-1 / e 7S Dsgg | dr
By 0 Sy-1

0o 1\k.k
= erfl ( Z 7( 1}3' " (STD s)k ds) dr
0 — !

00 -1 k k 1
= 7( ') <<STD s) , 1> / pN+2E=1 g,
k! Sy-170

< (-1 k
- k;o (N + 2k) &! <<STDS) ’1>

In order to prove the truncation error estimate ((C.24)), we consider once again the expression
of the remainder in the Lagrange form as in the proof of proposition [C.15] Indeed, knowing

Sn-1

that, for all s € Sy_1 we have sTDs € [Anin, Amax), and that SUD¢ehull {001, AN} %e*t‘ =
e~ min(0Amin) e can deduce that:
o k
—xTDhx (_1) < T k >
e X Dxgx S [ (Tps) "1
L. > wramm\Ps) 1),
00 _1)k i
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Appendix C. Quadrature formulas for the centered Gaussian distribution

As we remarked for the result of corollary if D is a positive definite matrix, the alter-
nating series can be subject to numerical errors deriving from floating point arithmetics.
Therefore, we propose a different expansion of the integral fBN e~ *'"DXdx as an infinite sum of
positive terms, relying on the results of proposition

Before providing the series expansion of the integral, we state a result on the lower incomplete
gamma function 7.

Lemma C.20. We recall the definition of the lower incomplete gamma function v : (R* \ {0}) x

Rt — R: .
v(a,x) = / t2te~tdt. (C.25)
0
Then, we have the following identity for any integer k > 0:
z 1 1
/ rre " dr = = 0 (’<a + ,$2) . (C.26)
0 2 2

Moreover, the terms v(5,x) satisfy the following recursive relation for all x > 0:

( z) = Jrerf()

) = 1—e™® (C.27)
( z) = (5—1) ’Y(%—Ll‘)—w%_le*z for k > 2,

where erf(x) = % I e~ dt is the error function evaluated in x.

Proof. Equation (C.26)) can be deduced by the change of variable t = r2:

z 1 2% 1 (2 . 1 1
/ rre " dr = 7/ T e tdt = 7/ $ 5 letdt = - ~y <l€ i ,x2> .
0 2 Jo 2 Jo 2 2

In order to prove the first two identities in (C.27)) we use the expression (C.26) and the
definition ((C.25)) respectively. Indeed:

’Y(%JU) = 2 e~ dr = /7 erf(2);
y(l,z) = [fedr=[-eT"j=1—¢e"

The last identity in (C.27)) comes from an integration by parts of (C.25)):

K B Y-S £ —¢]* K T g 4
7(2,3:)—/0752 etdt =157l ]0+ 31 /0752 e
= (g — 1) ~ <; — 1,1‘) — gz le?,

Proposition C.21. Let D = diag{\1,...,An} be a positive definite diagonal matriz where
Al > ... > Ay >0, and D = D/)\; the diagonal matriz rescaled with respect to its largest

O

etgenvalue. Then, the integral on the unit ball fBN e Dxdx can be expressed as follows:

)\;N/Q © 1

/BNeXTDde: 5 Zk, <N+k/\1><<sT<]I—]~))s)k,1> , (C.28)

Sn-1
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~ k
where, for all k > 0, the terms <<ST (]I — D) s) ,1> are computed by the recursive relation

Sy-1
(C.18|) in proposition |C.17, while the terms -y (% -1, 1) are evaluated as in lemma|C.20.
If only the first n terms of (C.28|) are considered, the truncation error can be bounded as:

Al;w i ;'7(N+k; A1)<(ST(]1—15)S)'“,1>

k=n+1

()\1 _ )\N)n-l-l e~ AN
(N+2(nt1) D)l
(C.29)

< |Sn-1]

Proof. At first, we write the term e~x'Dx iy spherical coordinates, isolating the matrix (]I — f))
in the argument o the exponential:
—xTDx _ =M fx]? A xT (I-D) x _ o2 ls|? Aar?sT (1-D) s

(&

Then, we compute the integral fBN e~*'Dxdx in spherical coordinates.

T 2 T(1_17
/ o X Dde:/ o Mlx2 A xT (I-D) x g
By By

) ~
:/ TN_le_TQAI </ e)qr? sT (]I—D)Sds> dr
Sn-1
B / ( )\1 o~ N+2k—1 <(ST<]I — f)) s>k, 1> > dr.
Sn-1

Since all the terms of the sum are positive, we can swap the integral and the sum thanks to
Tonelli’s theorem. Therefore, using the change of variables t = ry/A; and (C.26)), we get:

—xTDx o A T =\ )k b Ntok—1_—r2a
/ e dx:z<(s (]I—D)s) ,1> /r e~ " Mdr
BN k" SN—I 0
VAL gN+2k-1

k ~
R G DR A=

k=0
ISR | < T WAL > /‘m —t2 N+2k—1
= —((s"(I-D)s) ,1 e "t dt
S (e0)) ),
)\IN/Q =1 < T ~\ \k > N
= —((s"(I-D)s) ,1 ’y<k+,/\1>.
e SEY(CT B R (8
In order to provide the error estimate (C.29) we remark that:
N VAL $N+2k—1
0 < Y (k + — )\1> = )\k+N/2/ We_tQ dt
0 )\1
1 —A1
_ )\k+N/2/ N+2k—1,-Xr? gy _ \k+N/2_© ‘
1 0 " € 1 N + 2k
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Appendix C. Quadrature formulas for the centered Gaussian distribution

Therefore, similarly to the proof of the error estimate in proposition we get:

—N/2 n

—xTDx . )\1 l E < . = . >
PR 2= g (e {(10-D)s) ),
00 )\If T ~ k > /1 N42h_1 agr?
p I—-D 1 g
N k:zn;l-l k! <(S ( )S) " sy Jo " e t
—\ 71 . B
2 e "0-D)s) ’1>le
e~ M A (sT(1-D) s) n )\If . R .
§2(n+1)+N|<el (1-D) _;;)’d(s (1-D)s) 1 S
e M eM—AN s N-1
RPCES RS e TE VA

e AN .
S e TCES e L LGt A

O

We have expressed the quantities [g e~s' Psdg, Jsn_, e~5' P332 ds and JBy e='Dsds as
infinite series for a positive definite diagonal matrix D. The coefficients of the series are all
positive and depend from a single recursive relation , initialized by . Moreover, for
each development in series we provided an estimate for the truncation error after n terms.

It should be remarked that, for numerical applications, there exist algorithms computing the
lower incomplete gamma function appearing in equation ((C.28|) that are more stable than the
recursive relation (C.27)) [20] 120, 244].
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Appendix D

Python algorithms for the CDF of a
generalized chi-square

In this appendix we report the algorithms used to compute numerically the Cumulative Distri-
bution Function (CDF) of a generalized chi-squared random variable as well as its sensitivity
with respect to the parameters of its distribution. The shape optimization methods in which
these algorithms are applied are detailed in chapter

Let us consider N to be a positive integer, O a space of events, A C 29 a g-algebra, and
PP a probability measure. Let g € NV be a vector of N strictly positive integers, and w(-) and
e(+) two vectors in RY depending from a parameter ¢ € [—4, 6], with 6 > 0 and such that they
are differentiable in ¢ = 0. We suppose that all components of w(t) are strictly positive for all
admissible ¢. For any ¢ € [—6, 6], we consider the random variable T'(t) to follow a generalized
chi-squared distribution, where g is the vector of the degrees of freedom, w the vector of weights
on the non-central chi-squared components, and e ® e the vector of noncentrality parameters.

The random variable T(t) € L? (O,P;R) can be interpreted as a weighted sum of N inde-
pendent random variables as

T(t) = wi(H)Yi(t) + ...+ wy () Yy (L),

where each Y;(t) follows a noncentral chi-squared distribution with g; degrees of freedom and
noncentrality parameter d?. Moreover, T'(t) can be seen as the sum of |g| = Z;V:1 gj independent
Gaussian random variables squared

g1 gN
T(t) = (Z ka(t)) +...+ (Z X?V,k(t)) ,

k1=1 kn=1

where, for each i € {1,..., N} and k; € {1,...,g;}, X1 x(t) ~ N (di(t), w;(t)).

Let 7 > 0 be a positive constant. In order to ease the notation, we denote T' = T'(0) the
random variable corresponding to ¢ = 0, as well as w = w(0) and e = e(0). We are interested
in the computation of the CDF Fp (1), as well as its derivative with respect to ¢ in t = 0.

D.1 Centered case

The algorithm presented in this section can be applied only for cases where e = 0, that is
when T'(t) is a combination of standard chi-squared random variables. Without loss of gener-
ality, we assume that wy is the minimal component of the vector of weights w. As proven in
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Appendix D. Python algorithms for the CDF of a generalized chi-square

proposition the CDF of T can be expressed as

wy )N/ >
FT(T): ( N)N2 Z 1 (N-i-k wN)Bk,

Y
2 (m)N/2 TV, w; ko ¥

where the terms By, are defined by the recursive relation equation (5.33). Similarly, proposi-
tion 5.4 E proves that the derivative of ¢ — Fr) (1) int =0 is

exp(2w ) N2 N R,
P e (1 DML

The CDF of T in 7 as well as its derivative %FT (1)

d

EFT( T)

can be computed using the expressions
t=0

above, by the following python code.

class IntegrateCenteredGaussian:
def __init__(self, weights, derivative_weights=None, max_terms = 1000):
self .weights = weights
self.N = self.weights.size
self .max_terms = max_terms

if derivative_weights is None:
self.derivative_weights = np.zeros(self.N)
else:
self .derivative_weights = derivative_weights

def n_iterations(self, threshold, precision):
max_w = np.max(self.weights)
min_w = np.min(self.weights)
critical_factor = threshold*0.5 \
* (1/min_w - 1/max_w)
factor = critical_factor
for n in range(0, self.max_terms):
err = np.exp(-threshold/(2*max_w))*(2*np.pi**(self.N/2))\
/gamma (self.N/2) * (1/self.N * factor)
factor = factor * critical factor/(n+2)
if (err < precision and n>10) or (n == self.max_terms-1):
return n
return self.max_terms

def computeCoefficients(self, threshold, precision)
min_w = np.min(self.weights)
n_iterations = self.n_iterations(threshold, precision)
Bs = np.zeros((n_iterations+1,))
As = np.zeros((self.N, n_iterations+1))
Bs[0] = (2*np.pi**(self.N/2))/gamma(self.N/2)
for ii in range(self.N):
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D.1. Centered case

As[ii] [0] = Bs[0]/self.N
for k in range(n_iterations):
for ii in range(self.N):
Bs[k+1] += (1-min_w/self.weights[ii])\
*As[ii] [k]
for ii in range(self.N):
As[ii] [k+1] = (Bs[k+1] + 2% (k+1)\
*(1-min_w/self .weights[ii])\
*xAs[ii] [k])/(self.N + 2x(k+1))
return As, Bs

def computeWeightsRi(self, coeffsAs, threshold)
min_w = np.min(self.weights)
critical_factor = threshold*0.5 * (1/min_w)
Niter = coeffsAs.shape[1]
Ris = np.zeros((self.N,))
for ii in range(self.N):
factor = 1.0
for k in range(Niter):
Ris[ii] += factor*coeffsAs[ii] [k]
factor = factor*critical factor/(k+1)
return Ris

def cdf(self, threshold, precision = le-5):
prod_ws = np.prod(self.weights)
min_w = np.min(self.weights)
_, coeffsBs = self.computeCoefficients(threshold,precision)
eigmax = threshold/(2*min_w)
sumval = 0.0
coeffInt = 0.5*min_w**(self.N/2)\
/(np.pi**(self.N/2) * np.sqrt(prod_ws))
for k in reversed(range(coeffsBs.size)):
if self.N ==
val = coeffsBs[k]*gammainc(1/2+k, eigmax)\
*(beta(k+1/2, 1/2))/np.sqrt(np.pi)
elif self.N == 2:

val = coeffsBs[k]*gammainc(self.N/2+k, eigmax)
else:
val = coeffsBs[k]*gamma(self.N/2-1)\

xgammainc (self .N/2+k, eigmax)/((beta(k+l, self.N/2-1)))
sumval += val
estcdf = sumvalx*coeffInt
return estcdf

def derivative_cdf(self, threshold, precision = le-5):
prod_ws = np.prod(self.weights)
min_w = np.min(self.weights)
coeffsAs, _ = self.computeCoefficients(threshold, precision)
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Appendix D. Python algorithms for the CDF of a generalized chi-square

derivative = 0.0
coeffK = 0.5*(threshold/(2*np.pi))**(self.N/2)\
*np.exp(-0.5*threshold/min_w)/(np.sqrt(prod_ws))
Ris = self.computeWeightsRi(coeffsAs, threshold)
for ii in range(self.N):
derivative -= (self.dev_ws[ii] * Ris[ii])/(self.weights[ii])
return derivative * coeffkK

D.2 General case

If the vector e is not identically zero, we can adopt the technique detailed in section Thanks
to the results of Ruben [214], the CDF of T'(t) can be expressed by

Fray (1) = > () Fz@rsn) (;),

k=0

where 3 > 0 is a positive parameter independent from ¢. The derivative of t > Fp) (1) int =0
can be written as

d
agP%(T)

s T
= Z ’Y;f(O)FXQ(Qk+N) (5>a
=0 k=0

=
where

7(0) = w'(0) - p* +€'(0) - ¢*
as proven by lemma

The quantities Fr (1), é%l?p(T) , and the coefficients ~, and their derivatives can be

t=0
computed by the python code below.

class IntegrateGenericGaussian(IntegrateGaussian):
def __init__(self, weights, noncentrals=None, derivative_weights=None, ndof=None,
derivative_noncentrals=None, max_terms = 1000, beta=None):
self.weights = weights
self .N = self.weights.size
self .max_terms = max_terms
if noncentrals is None:
self .noncentrals = np.zeros(self.N)
else:
self .noncentrals = noncentrals

if ndof is None:

self.ndof = np.ones(self.N)
else:

self.ndof = ndof

if derivative_weights is None:
self.derivative_weights = np.zeros(self.N)
else:
self.derivative_weights = derivative_weights
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def

if derivative_noncentrals is None:
self.derivative_noncentrals = np.zeros(self.N)

else:
self.derivative_noncentrals = derivative_noncentrals

if beta is None:

self.beta = 0.9 * np.min(weights)
else:

self.beta = beta

getcoeffs(self, threshold, precision):

coeffspwr = [self.weights[j]#**self.ndof[j] for j in range(self.N)]
noncentralsSquared = np.asarray([nc**2 for nc in self.noncentrals])
gvec = np.zeros(self.max_terms)

nterms = 0

error = precision+l

noncentrstot = np.sum(noncentralsSquared)

ndofstot = np.sum(self.ndof)

coeffs = np.zeros(self.max_terms)

errs = np.zeros(self.max_terms)

### Auziliary functions
def computegterm(k) :
if k == 0:
g =0.0
for j in range(self.N):
g += self.ndof[j] + self.beta/self.weights[j] \
* (noncentralsSquared[j] - self.ndof[j])

else:
g =0.0
for j in range(self.N):
g += (self.ndof[jl*(1.0-self.beta/self.weights[j])**(k+1)+
(k+1)*noncentralsSquared[j]*self .beta\
/self.weights[j]\
*(1.0-self .beta/self .weights[j])**(k))
return g

def computecoeffsterm(k):
if k == 0:
return np.exp(-0.5%noncentrstot)\
*np.sqrt(self.betax*ndofstot/np.prod(coeffspwrs))
else:
convterm = np.dot(coeffs[:k], list(reversed(gvec[:k])))
return 0.5*convterm/k
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def computeerror(k, coeffs):
sumcoeffs = np.sum(list(reversed(coeffs[0:k])))
return (1.0 - sumcoeffs)*ncx2.cdf (x=threshold/self.beta\
, df=ndofstot+2*k, nc=noncentrstot)
### Ezecution
while(nterms < self.max_terms and error > precision and error > 0):
gvec[nterms] = computegterm(nterms)
coeffs[nterms] = computecoeffsterm(nterms)
error = computeerror(nterms, coeffs)
errs[nterms] = error
nterms += 1
return coeffs[0O:nterms], gvec[O:nterms]

def cdf(self, threshold, precision = le-5):
coeffsc, gvec = self.getcoeffs(threshold, precision)
cdfsthresholdcd = np.array([chi2.cdf (x=threshold/self.beta,\
df=self .N+2*k) for k in range(coeffsc.size)])
estcdf = coeffsc.dot(cdfsthresholdcd)
return estcdf

def sf(self, threshold, precision = 1le-5):
coeffsc, beta, gvec = self.getcoeffs(threshold, precision)
sfsthresholdcd = np.array([chi2.sf (x=threshold/self.beta,\
df=self .N+2%k) for k in range(coeffsc.size)])
estsfcd = coeffsc.dot(sfsthresholdcd)
return estsfcd

def compute_terms_derivative_p(self, threshold, precision):
gamma_coeffs, g_coeffs = self.getcoeffs(threshold, precision)
N_term_expansion = gamma_coeffs.size
p_coeffs = np.zeros([self.N, N_term_expansion])
for jj in range(self.N):
P_j = np.zeros(N_term_expansion)
a_j = np.zeros(N_term_expansion)
for kk in range(N_term_expansion):
if kk == O:
p_jlkk] = -gamma_coeffs[0]/(2.0*self.weights[jj])
elif kk == 1:
a_j[0] = (self.beta/self.weights[jjl**2)*(
(1.0-self.noncentrals[jjl**2))
p_j[1] = (gamma_coeffs[0]* a_j[0] \
+ g_coeffs[0]* p_j[0])/2

elif kk == 2:
a_jl1] = (self.beta/self.weights[jjl**2)\
*x(1+ (2xself.noncentrals[jjl*x2 - 1)\
*(2xself .beta/self .weights[jjl-1))
p_j[2] = (np.dot(gamma_coeffs[:kk], \
list(reversed(a_jl:kk])))\
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+ np.dot(g_coeffs[:kk],\
list(reversed(p_jl:kk]))))/(2xkk)
else:
a_jlkk-1] = ((1.-self.beta/self.weights[jjl)**(kk-2)*\
self.beta/self.weights[jjl**2\
*((kk-1+ (kk*self.noncentrals[jjl**2 - 1)\
* (kk*self .beta/self.weights[jj1-1))))
p_jlkk] = (np.dot(gamma_coeffs[:kk], \
list(reversed(a_jl:kk]))) +
np.dot(g_coeffs[:kk], \
list(reversed(p_jl:kk]))))/(2xkk)
p_coeffs[jjl = p_j
return p_coeffs

def compute_terms_derivative_q(self, threshold, precision):
gamma_coeffs, g_coeffs = self.getcoeffs(threshold, precision)
N_term_expansion = gamma_coeffs.size
q_coeffs = np.zeros([self.N, N_term_expansion])
for jj in range(self.N):
q_j = np.zeros(N_term_expansion)
b_j = np.zeros(N_term_expansion)
for kk in range(N_term_expansion):
if kk ==
q_jlkk] = 0.0
elif kk ==
b_j[0] = self.beta/self.weights[jjl\
*x(2 * self.noncentrals[jjl)
q_j[1] = (gamma_coeffs[0]* b_j[0] \
+g_coeffs[0]* q_j[0])/2
elif kk == 2:
b_j[1] self .beta/self.weights[jj]l**2x(
4% self .weights[jj] * self.noncentrals[jjl*
(1.-self.beta/self.weights[jjl))
q_jl[2] = (np.dot(gamma_coeffs[:kk], \
list(reversed(b_jl:kk]))) +
np.dot(g_coeffs[:kk],\
list(reversed(q_jl:kk]))))/(2*kk)

else:
b_jlkk-1] = ((1.-self.beta/self.weights[jj])**(kk-2)*
self.beta/self.weights[jjl**2x(
2xkk* self.weights[jj] * self.noncentrals[jjl*
(1.-self.beta/self.weights[jjl)))
q_jlkk] = (np.dot(gamma_coeffs[:kk],\
list(reversed(b_jl:kk]))) +
np.dot(g_coeffs[:kk],\
list(reversed(q_jl:kk]))))/(2xkk)
q_coeffs[jjl = q_j
return q_coeffs
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def derivative_cdf(self, threshold, precision = le-5):
p_coeffs = self.compute_terms_derivative_p(threshold, precision)
q_coeffs = self.compute_terms_derivative_q(threshold, precision)
deriv = 0.0
print ()
for k in range(p_coeffs.shape[0]):
deriv -= (p_coeffs.T[k].dot(self.dev_ws)
+ q_coeffs.T[k].dot(self.derivative_noncentrals))\
*chi2.cdf (x=threshold/self.beta, df=self.N+2xk)

return deriv
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